| 研究生: |
陳致銘 Chen, Chi-Ming |
|---|---|
| 論文名稱: |
動力三軸試驗應用於評估土壤液化潛能之適用性研究 The Research into the Applicability of Dynamic Triaxial Test in the Evaluation of Soil Liqufaction Potential |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系碩士在職專班 Department of Civil Engineering (on the job class) |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | 砂土 、三軸反覆載重試驗 、土壤液化 、相對密度 |
| 外文關鍵詞: | Relative Density, Soil Liquefaction, Sand, Triaxial Cyclic Load Test |
| 相關次數: | 點閱:157 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣地區過去對於土壤液化潛能評估方法大都採用簡易經驗評估法,但對該方法所得結果是否偏於保守而造成工程成本的提高,是工程實務界所關心的重要問題之一。為能瞭解砂土之液化潛能評估準確與否,本研究選擇台灣西南部之長榮大學圖書資訊大樓工程地下室開挖取得之砂土做為研究對象,分別製作相對密度為50﹪、60%及70﹪的重模試體,利用動力三軸試驗之不排水反覆載重試驗,以軸向單應變達5%時稱液化破壞為前提,以求得土壤之液化潛能,與採用Seed法及T&Y法之SPT簡易經驗評估法所得結果進行比較,藉以探討採動力三軸試驗做為液化潛能評估方法的適用性。
本研究中發現,若與Seed法及T&Y法之SPT簡易經驗評估法所得結果相比較,本研究區重模土壤在相對密度為60%之試驗結果與SPT簡易經驗評估法所得液化潛能結果相近;相對密度為50%的疏鬆砂土之試驗結果顯示有較高之液化潛能;但相對密度為70%的緊密砂土之試驗結果顯示有較低之液化潛能。亦即相對密度超過70%時,以SPT簡易經驗法評估液化潛能時,可能會低估液化阻抗強度,而對於相對密度低於50%的疏鬆砂土則可能會高估其液化阻抗強度,因此針對現地之液化潛能評估時,對於緊密砂土應考量其相對密度,並參考動力三軸試驗之土壤液化評估結果,以確保土壤液化潛能準確性。
研究中亦發現,操作動力三軸試驗時,試體飽和度、試驗過程之土樣擾動及操作誤差等會影響到試驗的準確性。而試體重模過程中的作業包括橡皮膜、濾紙及圍壓等施作過程及試驗設備本身的感應器之系統誤差均會造成所得試驗結果的準確性有所誤差,本研究顯示這些因素所造成的誤差會使試驗結果趨向保守;而針對高相對密度的緊密土層的液化評估結果不若SPT簡易經驗評估法之保守。所以在從事緊密砂土的液化潛能評估時建議可採用動力三軸試驗做為輔助方法,如此對於工程的施工成本上較可避免不必要的浪費。
In the past, Simplified Empirical Procedures were adopted for soil liquefaction potential evaluation in Taiwan. One of important problems which the people from the engineering circle are concerned about is, however, whether the procedures are a little too conservative and accordingly increases the cost of project. To work out whether or not liquefaction potential evaluation is exact, the soil specimens that were dug out from the library’s basement of Chang Jung Christlan University located in the southwest of Taiwan is chosen as the object of this study, in which, specimens with relative density at 50%, 60% and 70% are remolded. By means of dynamic triaxial undrained cyclic loading test the definition of soil liquefied is said to be whenever the single-side axial strain reaches 5%. On the basis of the comparison with the results evaluated by using Seed and T & Y SPT Simplified Empirical Procedures, this study probes into the applicability of dynamic triaxial test in the evaluation of soil liquefaction potential.
It is found that, in comparison with the results evaluated by using Seed and T & Y SPT Simplified Empirical Procedures, liquefaction potential of the remolded soil with 60% relative density in this study is close to that under SPT Simplified Empirical Procedures and loose sand whose relative density is 50% shows higher liquefaction potential, whereas dense sand with 70% relative density shows lower liquefaction potential, which means that, when the relative density is higher than 70%, liquefaction impedance strength may be undervalued in Simplified Empirical Procedures, by contrast, it may be overrated on condition that the relative density of loose sand is lower than 50%. Therefore, when evaluating liquefaction potential of some kind of soil, relative density of dense sand should be taken into consideration and the evaluation result of soil liquefaction under dynamic triaxial test should be referred to in order to guarantee the evaluation accurate.
It is also found that in the study, saturation of specimens, disturbance of soil samples and operation errors during the test will have an effect on the exactness of the dynamic triaxial test. In remolding the specimens, not only the operations of membrance, filter paper and cell pressure but errors in sensor system of facilities for the test may result in errors of the test result. This study reveals that, due to the errors arising from these factors, the result of the test will incline to be conservative, yet the liquefaction evaluation under dynamic triaxial test on dense soil layer with higher relative density is less conservative than that under Simplified Empirical Procedures. Hence, in evaluating the liquefaction potential of dense sand, dynamic triaxial test can be adopted as secondary approach so that unnecessary waste in construction cost can be avoided.
1.大合鑽探技術顧問有限公司,「長榮大學蘭大衛紀念圖書資訊大樓及行政大樓基地土壤地質鑽探試驗報告書」,台南,(2004)。
2.「土質試驗方法的解說」第一回改訂版,日本財團法人地盤工學會改訂編集委員會,日本東京。
3.王志榮,「深度加權法之修正與台灣西南部地區土壤液化潛能微分區研究」,碩士論文,國立成功大學土木工程學研究所,臺南,(2003)。
4.王依偉,「接頭對標準貫入試驗打擊能量之影響」,碩士論文,國立成功大學土木工程學研究所,臺南,(2003)。
5.王冠彬,「含細料砂質改良土之力學行為」,碩士論文,國立中央大學土木工程學研究所,中壢,(2004)。
6.江國良,「飽和砂土受反覆荷重作用後之不排水受剪行為」,碩士論文,國立臺灣大學土木工程學研究所,臺北,(2000)。
7.江澎,「飽和砂土動態性質強度之研究-台灣地區砂性土壤」,碩士論文,國立交通大學土木工程學研究所,新竹,(1995)。
8.呂建億,「荷重頻率比對不同飽和度之含細粒料砂土動態性質研究」,碩士論文,國立臺灣大學土木工程學研究所,臺北,(1999)。
9.林呈、孫洪福,「見證921集集大地震-震害成因與因應對策」,台北,McGraw-Hill,台灣省土木技師公會,第578-579頁(2000)。
10.吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利季刊,第六卷,第二期,第39-70頁(1979)。
11.范恩碩,「以九二一集集地震案例探討細料對液化潛能評估之影響」,博士論文,國立成功大學土木工程學研究所,臺南,(2004)。
12.柯子昭,「麥寮砂之液化阻抗與體積應變特性之研究」,碩士論文,國立成功大學土木工程學研究所,臺南,(2004)。
13.「建築技術規則建築構造設計規範(含解說)」,內政部建築研究所,研究計畫成果報告第十章「土壤液化評估」,台北,(1998)
14.翁作新、陳正興、黃俊鴻,「國內土壤受震液化問題之檢討」,地工技術,第100期,第63-78頁(2004)。
15.高茂森,「土壤動態三軸試驗條件對液化潛能分析之影響」,碩士論文,國立成功大學土木工程學研究所,臺南,(2004)。
16.孫家雯,「砂土細料界定對液化強度之影響」,碩士論文,國立臺灣大學土木工程學研究所,臺北,(2002)。
17.陳彥吉,「砂土因反水壓增加引致之弱化行為」,碩士論文,國立中央大學土木工程學研究所,中壢,(2004)。
18.黃俊鴻、楊志文,「以集集地震案例探討現有SPT-N液化評估方法之適用性」,地工技術,第93期,第79-90頁(2003)。
19.黃筱卿,「員林地區土壤液化之地盤反應分析」,碩士論文,國立臺灣大學土木工程學研究所,臺北,(2002)。
20.辜炳寰,「類神經網路於土壤液化評估之應用」,碩士論文,國立成功大學土木工程學研究所,臺南,(2002)。
21.趙柏祥,「砂質土壤細粒料含量對冰凍土壤的影響」,碩士論文,國立臺灣科技大學營建工程學研究所,臺北,(2002)。
22.廖展豐,「砂質土層承受地震荷重之試驗沉陷分析與數值模擬」,碩士論文,國立成功大學土木工程學研究所,臺南,(2004)。
23.蔡維倫,「地震能量於液化評估準則建立之應用」,碩士論文,國立成功大學土木工程學研究所,臺南,(2002)。
24.蕭士惠,「低壓灌漿改良濁水溪沖積砂土液化強度之初步研究」,碩士論文,國立雲林科技大學營建工程研究所,雲林,(2004)。
25.羅建民,「剪力波速評估土壤液化潛能」,碩士論文,國立臺灣大學土木工程學研究所,臺北,(2003)。
26.蘇聖惟,「砂土排水與不排水受剪行為之比較」,碩士論文,國立臺灣大學土木工程學研究所,臺北,(1999)。
27.Baldi, G., and Nova, R., “Membrane Penetration Effects in Triaxial Testing,” Journal of Geotechnical Engineering , Vol.110, No.3, pp403-420(1984)
28.Braja M.D., “Advanced Soil Mechanics ,” Second Edition, Taylor & Francis, pp. 314-317 (1997).
29.Chaney, R.C., “Saturation Effects on the Cyclic Strength of Sands,” Earthquake Engineering and Soils Dynamics, ASCE, Vol. 1,pp.342-358(1978)
30.Ishihara, K., “Behavior in Earthquake,” Geotechnics. Oxford Press(1996)
31.Iwasaki, T., Tokida, K., Tatsuoka, F., Watanable, S., Yasuda, S., and Sato, H., “Microzonation for Soil Liquefaction Potential using the Simplified Model,” Proceedings of the 3rd International Earthquake Microzonation Conference, Seattle, pp.1319-1330(1982)
32.Wakamatsu, K., “Liquefaction History, 414-1990, Japan,” Proc, 4th Japan-U.S. Workshop on Earthquake Resistant Design of Facilities and Countermeasures for Soil Liquefaction, pp.97-114, Tokyo(1992)
33.Kishida, H., “Characteristics of Liqufied Sands during Mino-Owari, Tohnankai, and Kikui Earthquake,” Soil and Foundation, Vol.9, No.1, Mar. Japan(1969)
34.Kovacs, W.D., Salomone, L.A., and Yorkel, F.Y., “Comparison of Energy Measurments in the Standard Penetration Test Using the Cathead and Rope Method,” National Bureau-of Standards Report to the US Nuclear Regulatory Commission, Nov,(1983)
35.Kramer, S.L., “Geotechnical Earthquake Engineering,” Prentice Hall, Englewood Cliffs, New Jersey(1996)
36.Lambe, T.W., and Whitman, R.V., “Soil Mechanics, ”SI Version, John Wiley & Sons, New York,(1979)
37.Miura S., and Toki S., “A Sample Preparation Method and its Effect on Static and Cyclic Deformation-Strength Properties of Sand,” Soils and Foundations, Vol. 22, No. 1,pp.61-77(1982)
38.Mulilis J.P., “The Effects of Method of Sample Preparation on the Stress-Strain Behavior,” Report U.C. Bekeley Earthquake Engineering Research Center(1975)
39.Mulilis J.P., Townsend F.C., and Horz R.C., “Triaxial Testing Techniques and Sand Liquefaction,” ASTM. STP,pp.265-279(1978)
40.Schmertmann, J.H., “Predicting the qc/N Ratio-Interpreting the Dynamics of the Standard Penetration Test,” Univ. of Florida Report to the Department of Transportation, FL, Oct.,(1976)
41.Seed, H.B., and Idress, I.M., “Simplified Procedures for Evaluation Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM9, pp.1249-1273(1971)
42.Seed, H.B., and Idress, I.M., “Ground Motion and Soil Liquefaction during Earthquake,” Monograph, Earthquake Engineering Institute, Oakland,Ca.(1982)
43.Seed, H.B., Idress, I.M., and Arango, I., “Evaluation of Liquefaction Potential Using Field Performance Data,” Journal of the Geotechnical Engineering Division, ASCE, Vol.109, No.3, pp.458-482(1983)
44.Seed, H.B., and Peacock, W.H., “Test Procedure for Soil Liquefaction Characteristics,” ASCE, Vol.97, pp.1099-1119(1971)
45.Seed, H.B., Tokimatsu, K., Hard, L.F., and Chung, R.M., “The Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Journal of the Geotechnical Engineering Division, ASCE, Vol.111, No.12, pp.1425-1445(1985)
46.Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana J.M., Riemer, M.F., Sancio, R.B., Bray, J.D., Kayen. R.E., and Faris, A., “Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework”, 26th Annual ASCE Los Angeles Geotechnical Spring Seminar Keynote Presentation, H.M.S. Queen Mary, Long Beach, California ,April 30(2003)
47.Sitharam, T.G., GovindaRaju. L., and Sridharan. A., “Dynamic Properties and Liquefaction Potential of Soils,” Current Science, Vol.87, No.10, pp.1370-1378 (2004)
48.Tokimatsu, K., and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fine Content,” Soils and Foundations, Vol. 23, No. 4, pp.56-74 (1983).
49.Wong, R.T., Seed, H.B., and Chan, C.K., “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundation Division, ASCE. Vol.101, No.GT6,pp.571-583(1975)
50.Wang, W., “Some Finding in Soil Research Liquefaction,” Research Report, Water Conservancy and Hydroelectric Power Scientific Research Institute, Bejjing(1979)
51.Yoshimi, Y., Tokimatsu, K., Kaneko, O., and Makihara, Y., “Undrained Cyclic Shear Strength of a Dense Niigata Sand,” Soils and Foundations, Vol. 24, No. 4, pp.131-145 (1984).
52.Yoshimi, Y., Tokimatsu, K., and Hosaka, Y., “Evaluation of Liqufaction Resistance of Clean Sands Based on High-Quality Undrained Sample,” Soils and Foundations, Vol. 29, No. 1, pp.93-104 (1989).
53.Youd, T.L. and Idress, I.M., Proc. of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022.(1997)