簡易檢索 / 詳目顯示

研究生: 胥柔安
Hsu, Jou-An
論文名稱: 研究在上呼吸消化道癌中AMIGO2所扮演的角色
The role of adhesion molecule with Ig like domain 2 (AMIGO2) in upper aerodigestive track cancer
指導教授: 吳梨華
Wu, Li-Wha
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 61
中文關鍵詞: 上呼吸消化道癌AMIGO2口腔癌食道癌上皮間質轉換
外文關鍵詞: Upper aerodigestive tract cancer, AMIGO2, oral cancer, esophageal cancer, epithelial- mesenchymal transition
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 上呼吸消化道癌是世界上第三大的癌症類型,範圍囊括口腔、鼻腔、咽、喉、氣管與食道,其中食道癌與口腔癌分別為上呼吸消化道癌的兩大主要類型。致病因子為吸菸、酗酒、嚼食檳榔與熱飲。病理分期於遠端器官轉移階段的罹病患者其五年存活率僅剩20-30%。然而目前對於上呼吸消化道癌進展與轉移之機制方面的研究仍保有很大的探討空間。本論文研究主要著重於研究The adhesion molecule with Ig like domain 2 (AMIGO2),其為typeⅠ穿膜蛋白。於先前的文獻已提及AMIGO2參與胃致癌作用,並作為腫瘤血管生成所需的主要細胞類型—血管內皮細胞的存活因子之功用。但AMIGO2在上呼吸消化道癌的功能與作用機制仍未有深入的了解。透過查詢分析TCGA—食道癌與頭頸癌的資料庫數據,我們發現在上述癌症中AMIGO2表現量上升,而在頭頸癌中AMIGO2上升趨勢表現與預後不佳顯著相關。因此我們嘗試經由於體外實驗降低或過度表現AMIGO2以研究AMIGO2失調於上呼吸消化道癌所扮演的角色。經由驗證AMIGO2在不同上呼吸消化道癌細胞株的蛋白表現,我們進一步發現當改變AMIGO2的表現量時,AMIGO2會調控上呼吸消化道癌細胞株的增生、菌落形成、移動、侵入與不同基質蛋白下的細胞附著功能,同時我們也會探討AMIGO2在細胞附著所調控的訊息傳遞路徑與上皮間質轉化中的參與角色。最後透過此次研究,我們希望提供在上呼吸消化道癌中AMIGO2失調所扮演的角色與其作用機制。

    Upper aerodigestive tract cancer (UATC) is the third leading cancer type in the world, including those in oral cavity, nasal cavity, pharynx, larynx, trachea and esophagus. Esophageal cancer and oral cancer are two major types of UATC. Furthermore, more than 90% of this cancer type is squamous cell carcinoma. Their major risk factors include smoking, alcohol consumption, chewing betel nut, and hot drinks. The 5-yr survival rates for these patients with distant metastasis stage is only 20-30%. In the year of 2018, oral cancer, a subtype of head and neck cancer, and esophageal cancer are, respectively, the 5th and 6th leading causes of male cancer death in Taiwan. However, the underlying mechanism for UATC progression and metastatic spread remains elusive. The adhesion molecule with Ig like domain 2 (AMIGO2) a type Ⅰ transmembrane protein. AMIGO2 was recently shown to participate in gastric carcinogenesis and function as a survival factor for vascular endothelial cells, the major cell type required for tumor angiogenesis. However, its function and action mechanism in UATC remains elusive. Through the exploration of TCGA-esophageal and head and neck cancer databases, we also found the up-regulation of AMIGO2 in these cancer subtypes and the up-regulation was significantly associated with poor prognosis among head and neck cancer patients. We then aimed to study the role of AMIGO2 deregulation in UATC cells by using knockdown or overexpression methods followed by in vitro models. Following the validation of differential AMIGO2 protein expression in these cancer cell lines, we further showed that altered AMIGO2 expression could modulate the proliferation, colony formation, cell migration, cell invasion and cell adhesion to various matrix proteins in context-dependent manners. The involvement of AMIGO2 in cell adhesion-mediated signaling pathways and EMT were also studied by Western blots. Through this study, we hope to provide a role for AMIGO2 deregulation and its actin mechanism in UATC.

    Abstract in Chinese I Abstract in English II Acknowledgement IV Content VI List of Tables and Figures VIII Ⅰ. Introduction 1 1-1 Upper aerodigestive tract cancer (UATC) 1 1-2 Adhesion molecule with Ig like domain(AMIGO) family 1 1-3 Previous studies of AMIGO2 in cancer 2 Ⅱ. Hypothesis 4 Ⅲ. Specific aims 5 Ⅳ. Materials and methods 6 4-1 Cell culture 6 4-2 Western blot analysis 6 4-3 Lentivirus preparation and transduction 6 4-4 Doubling time assay 7 4-5 Wound healing assay 7 4-6 Transwell invasion assay 7 4-7 Colony formation assay 7 4-8 Cell adhesion assay 8 4-9 Statistical analysis 8 Ⅴ. Results 9 5-1 High mRNA expression of AMIGO2 was associated with poor prognosis in UATC patients 9 5-2 The expression of AMIGO2 mRNA and protein in UATC cell lines 9 5-3 AMIGO2 knockdown decreased oral cancer cell proliferation, colony formation and migration while increasing cell invasion and adhesion to collagen 9 5-4 AMIGO2 overexpression reduced oral cancer cell proliferation, colony formation and invasion but increased cell length, migration and adhesion to certain matrix 10 5-5 AMIGO2 deregulation also altered the ability of proliferation, migration, invasion, colony formation in esophageal cancer cells 10 5-6 The molecular mechanism whereby AMIGO2 mediated pleiotropic effects in UATC cells 11 5-7 TGF-β increased AMIGO2 expression during the EMT induction in OEC-M1 cells 12 5-8 AMIGO2 silencing only had minor effect on TGF-β-induced morphology change and N-cadherin expression in OEC-M1 cells 12 Ⅵ. Discussion 14 Ⅶ. References 16

    Capote-Moreno, A., Brabyn, P., Muñoz-Guerra, M., Sastre-Pérez, J., Escorial-Hernandez, V., Rodríguez-Campo, F., García, T., and Naval-Gías, L. (2020). Oral squamous cell carcinoma: epidemiological study and risk factor assessment based on a 39-year series. International Journal of Oral and Maxillofacial Surgery.

    Chen, Y., Hor, H.H., and Tang, B.L. (2012). AMIGO is expressed in multiple brain cell types and may regulate dendritic growth and neuronal survival. Journal of cellular physiology 227, 2217-2229.

    Dongre, A., and Weinberg, R.A. (2019). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nature reviews Molecular cell biology 20, 69-84.

    Fontanals-Cirera, B., Hasson, D., Vardabasso, C., Di Micco, R., Agrawal, P., Chowdhury, A., Gantz, M., de Pablos-Aragoneses, A., Morgenstern, A., and Wu, P. (2017). Harnessing BET inhibitor sensitivity reveals AMIGO2 as a melanoma survival gene. Molecular cell 68, 731-744. e739.

    Gonzalez, D.M., and Medici, D. (2014). Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal 7, re8-re8.

    Hao, Y., Baker, D., and ten Dijke, P. (2019). TGF-β-mediated epithelial-mesenchymal transition and cancer metastasis. International journal of molecular sciences 20, 2767.

    Hossain, S., Ahmed, M.U., Alam, S., Watanabe, A., Harashima, A., and Yamamoto, H. (2012). Expressions and roles of AMIGO gene family in vascular endothelial cells. International Journal of Bioscience, Biochemistry and Bioinformatics 2, 1.

    Huo, T., Canepa, R., Sura, A., Modave, F., and Gong, Y. (2017). Colorectal cancer stages transcriptome analysis. PloS one 12.

    Jemal, A., Center, M.M., DeSantis, C., and Ward, E.M. (2010). Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiology and Prevention Biomarkers 19, 1893-1907.

    Kajander, T., Kuja-Panula, J., Rauvala, H., and Goldman, A. (2011). Crystal structure and role of glycans and dimerization in folding of neuronal leucine-rich repeat protein AMIGO-1. Journal of molecular biology 413, 1001-1015.

    Kanda, Y., Osaki, M., Onuma, K., Sonoda, A., Kobayashi, M., Hamada, J., Nicolson, G.L., Ochiya, T., and Okada, F. (2017). Amigo2-upregulation in tumour cells facilitates their attachment to liver endothelial cells resulting in liver metastases. Scientific reports 7, 1-13.

    Kaur, G., Singh, M., Kaur, M., Singh, B., and Gupta, R. (2019). A clinicopathological study of upper aerodigestive tract cancers. Nigerian journal of clinical practice 22, 1208-1212.

    Kuja-Panula, J., Kiiltomäki, M., Yamashiro, T., Rouhiainen, A., and Rauvala, H. (2003). AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. The Journal of cell biology 160, 963-973.

    Liu, Y., El-Naggar, S., Darling, D.S., Higashi, Y., and Dean, D.C. (2008). Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development 135, 579-588.

    Lyons, A., and Jones, J. (2007). Cell adhesion molecules, the extracellular matrix and oral squamous carcinoma. International journal of oral and maxillofacial surgery 36, 671-679.

    Matsushima, N., Takatsuka, S., Miyashita, H., and Kretsinger, R.H. (2019). Leucine rich repeat proteins: sequences, mutations, structures and diseases. Protein and peptide letters 26, 108-131.

    Michaylira, C.Z., Wong, G.S., Miller, C.G., Gutierrez, C.M., Nakagawa, H., Hammond, R., Klein-Szanto, A.J., Lee, J.-S., Kim, S.B., and Herlyn, M. (2010). Periostin, a cell adhesion molecule, facilitates invasion in the tumor microenvironment and annotates a novel tumor-invasive signature in esophageal cancer. Cancer research 70, 5281-5292.

    Muir, C., and Weiland, L. (1995). Upper aerodigestive tract cancers. Cancer 75, 147-153.

    Napier, K.J., Scheerer, M., and Misra, S. (2014). Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment modalities. World journal of gastrointestinal oncology 6, 112.

    Neville, B.W., and Day, T.A. (2002). Oral cancer and precancerous lesions. CA: a cancer journal for clinicians 52, 195-215.

    Ono, T., Sekino-Suzuki, N., Kikkawa, Y., Yonekawa, H., and Kawashima, S. (2003). Alivin 1, a novel neuronal activity-dependent gene, inhibits apoptosis and promotes survival of cerebellar granule neurons. Journal of Neuroscience 23, 5887-5896.

    Park, H., Lee, S., Shrestha, P., Kim, J., Park, J.A., Ko, Y., Ban, Y.H., Park, D.-Y., Ha, S.-J., and Koh, G.Y. (2015). AMIGO2, a novel membrane anchor of PDK1, controls cell survival and angiogenesis via Akt activation. Journal of Cell Biology 211, 619-637.

    Pennathur, A., Gibson, M.K., Jobe, B.A., and Luketich, J.D. (2013). Oesophageal carcinoma. The Lancet 381, 400-412.

    Rabenau, K.E., O'Toole, J.M., Bassi, R., Kotanides, H., Witte, L., Ludwig, D.L., and Pereira, D.S. (2004). DEGA/AMIGO-2, a leucine-rich repeat family member, differentially expressed in human gastric adenocarcinoma: effects on ploidy, chromosomal stability, cell adhesion/migration and tumorigenicity. Oncogene 23, 5056-5067.

    Shao, N., Yuan, K., Zhang, Y., Cheang, T.Y., Li, J., and Lin, Y. (2018). Identification of key candidate genes, pathways and relat-ed prognostic values in ER-negative/HER2-negative breast cancer by bioinformatics analysis. Journal of BU ON: official journal of the Balkan Union of Oncology 23, 891-901.

    Shen, S., Gui, T., and Ma, C. (2017). Identification of molecular biomarkers for pancreatic cancer with mRMR shortest path method. Oncotarget 8, 41432.

    Shook, D., and Keller, R. (2003). Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development. Mechanisms of development 120, 1351-1383.

    Sonzogni, O., Haynes, J., Seifried, L.A., Kamel, Y.M., Huang, K., BeGora, M.D., Yeung, F.A., Robert-Tissot, C., Heng, Y.J., and Yuan, X. (2018). Reporters to mark and eliminate basal or luminal epithelial cells in culture and in vivo. PLoS biology 16, e2004049.

    Tran, G.D., Sun, X.D., Abnet, C.C., Fan, J.H., Dawsey, S.M., Dong, Z.W., Mark, S.D., Qiao, Y.L., and Taylor, P.R. (2005). Prospective study of risk factors for esophageal and gastric cancers in the Linxian general population trial cohort in China. International journal of cancer 113, 456-463.

    Warnakulasuriya, S. (2009). Global epidemiology of oral and oropharyngeal cancer. Oral oncology 45, 309-316.

    Williams, A.F., and Barclay, A.N. (1988). The immunoglobulin superfamily—domains for cell surface recognition. Annual review of immunology 6, 381-405.

    Yehya, A.H.S., Asif, M., Petersen, S.H., Subramaniam, A.V., Kono, K., Majid, A.M.S.A., and Oon, C.E. (2018). Angiogenesis: Managing the culprits behind tumorigenesis and metastasis. Medicina 54, 8.

    Zhang, H.-Z., Jin, G.-F., and Shen, H.-B. (2012). Epidemiologic differences in esophageal cancer between Asian and Western populations. Chinese journal of cancer 31, 281.

    無法下載圖示 校內:2025-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE