研究生: |
邱逸晨 Ciou, YiChen, |
---|---|
論文名稱: |
應用相變化材料於鋰電池模組之自然對流熱傳分析 Analysis on Convection Heat Transfer of Lithium-ion Battery Module Applying Phase Change Material |
指導教授: |
吳鴻文
Wu, Horng-Wen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 相變材料 、散熱鰭片 、電池間距 、鋰離子電池 、熱傳 |
外文關鍵詞: | Phase change material, fin array, inter-cell distance, Li-ion battery, Heat transfer |
相關次數: | 點閱:94 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討具相變化材料的鋰電池模組的暫態三維自然對流,利用有限體積法(FVM) 來離散流體體積(VOF) 之Navier-Stokes方程和能量方程並化為代數方程組。運用解壓力耦合方程的半隱式方法(SIMPLE, Semi-Implicit Method for Pressure-Linked Equation) 來解該代數方程組迭代至收斂,獲得流場及溫度場。此模擬將電池模型置於地面上,且放置在自然環境中。九顆鋰電池模組下探討相同放電率 (2 C) 、不同封裝外殼內材料 (空氣和相變材) 和不同電池間的距離,於自然對流且考慮熱輻射情況下,模擬整體溫度場與流場分佈。本文也討論在鋰電池模組的加入極頭鋁製散熱鰭片的效果。
研究結果顯示:封裝外殼內的空氣以相變材取代後具有更好的傳熱性能。相變材於鋰電池模組的使用能使最高溫度大約降14.2 K。此外,當相變材開始融化時,相變材可以使電池模組的最高溫度維持在大約321 K。加裝鋁製散熱鰭片能有較好的散熱效果。鋁製鰭片搭配相變化材料能讓鋰電池模組獲得最好的對流熱傳效果。與鋁製鰭片搭配空氣的鋰電池模組相比,鋁製鰭片配合相變材的使用可有效低整體溫度約15.2 K。
This thesis investigates transient three-dimensional heat transfer Lithium-ion battery module with phase change material (PCM) in natural convection. The Navier-Stokes equations and energy equation for Volume of Fluid (VOF) are discretized by the Finite Volume Method (FVM) and then are constructed as a system of algebraic equations. It could be solved by semi-implicit method for pressure-linked equation (SIMPLE). The solutions are iterated to converge within each step to obtain the temperature and flow field.
This simulation module places the battery on the ground and put it in the natural environment. The flow characteristic and temperature distribution in natural convection are analyzed for nine-cell batteries case, at constant discharge rates (2 C), with different kinds of materials placed inside in the package (the air and the PCM) under different inter-cell distances. The effect of fin array was added on top of the effects examined with the fin.
The better heat transfer performance is found by replacing the air with the PCM in the package. The highest temperature of the module using the PCM without fin array is about 14.2K lower than that of the module using the air without fin array. Furthermore, using the PCM without fin array could keep the highest temperature of the battery module at about 321 K when the melting process of the PCM occurs. The battery module using the PCM with fin array can enhance the convection heat transfer. The overall temperature could be reduced about 15.2 K when it compared with that using air without fin array.
[1] S. Dhameja, “Electric Vehicle Battery”, Systems, Elsevier, 2005.
[2] M. Armand, J. M. Tarascon, Building better batteries, Nature Vol. 451, pp. 652–657, 2008.
[3] B. Scrosati, J. Hassoun, Y.K. Sun, “Lithium-ion batteries. A look into the future”, Energy Environ, pp. 3287–3295, 2011.
[4] J. Franklin, R. Spotnitz, “Abuse behavior of high-power, lithium-ion cells”, Journal of Power Sources Vol. 113, pp. 81–100, 2003.
[5] G.Q. Chu, J.H. Sun, Q.S. Wang, “Lithium ion battery fire and explosion”, Fire Safety Science–proceedings of the Eighth International Symposium, pp. 375-382, 2005.
[6] A. A. Pesaran, A. Vlahinos, S. D. Burch, “Thermal performance of EV and HEV battery modules and packs”, 14th Electric Vehicle Symposium, 1997.
[7] B Haran, B.N. Popov, P Ramadass, R. White, “Capacity fade of Sony 18650 cells cycled at elevated temperatures: Part I. Capacity fade analysis,” Journal of Power Sources, Vol. 112, pp. 614–620, 2002.
[8] C.C. Wan, K.H. Liu, M.S. Wu, Y.Y. Wang, “Heat dissipation design for lithium-ion batteries”, Journal of Power Sources, Vol. 109, pp. 160–166, 2002.
[9] A. Mills, J. R. Selman, M. Farid, S. Al-Hallaj, “Thermal conductivity enhancement of phase change materials using a graphite matrix,” Journal of Applied Thermal Engineering 26, pp. 1652-1661, 2006.
[10] A. Mills, S. Al-Hallaj, “Simulation of passive thermal management system for lithium-ion battery packs”, Journal of Power Sources Vol.
48
141, pp. 307-315, 2005.
[11] N. Sato, “Thermal behavior analysis of lithium-ion batteries for electric and hybrid vehicles J Power Sources”, Vol. 99, pp. 70–77, 2001.
[12] M. Bahrami, P. Taheri, “Temperature Rise in Prismatic Polymer Lithium-Ion Batteries: An Analytic Approach”, SAE, 2012.
[13] C.C. Wan, S.C. Chen, Y.Y. Wang “Thermal analysis of lithium-ion batteries”, J. Power Sources, Vol. 140, pp. 111–124, 2005.
[14] B. Chengc, B. Caoa, B. Longb, G. Guan, S. Zhoua, P. Xua, “Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application”, J. Power Sources, Vol. 195, pp. 2393-2398, 2010.
[15] A.R. Michael, D.U. Sauer, “Dynamic electric behavior and open circuit voltage modeling of LiFePO4 based lithium ion secondary batteries”, J. Power Sources, Vol. 196, pp. 331-336, 2011.
[16] J. R. Selman, R. Sabbah, R. Kizilel, S. Al-Hallaj, “Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution”, J. Power Sources, Vol.182, pp. 630, 2008.
[17] A. Pesaran, G.H. Kim, J. Gonder, J. Lustbader, “Thermal management of batteries in advanced vehicles using phase-change materials”, in: 23rd International Electric Vehicles Symposium and Exposition, Anaheim, California, 2007.
49
[18] S.F. Wang, Y.L. Zhang, Z.H. Rao, “Simulation of heat dissipation with phase change material for cylindrical power battery” Energy Inst, Vol. 85, pp. 38–43, 2012.
[19] J. Zhao, K.J. Tseng, T. Wang, “Zhongbao Wei Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling stratefactores” 2014.
[20] K.K. Parsons, “Design and simulation of passive thermal management system of passive thermal management system for lithium-ion battery packs on an unmanned ground vehicle,” Master thesis, Science in Mechanical Engineering, California Polytechnic State University, 2012.
[21] S.K. Mohammadian, Y. Zhang “Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles J Power Sources”, Vol. 273, pp. 431–439, 2015.
[22] C. Forgez, C. Delacourt, D.V. Do, G. Friedrich, M. Morcrette, “Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery Journal of Power Sources”, Vol. 195, pp. 2961–2968, 2010.
[23] J. W. Evans, Y. Chen, “Heat transfer phenomena in lithium/polymer electrolyte batteries for electric vehicle application”, J. Electrochem. Soc., Vol.140, pp.1833-1838, 1993.
[24] A. Kojic, J. Christensen, J. Ahmed, N.A. Chaturvedi, R. Klein, “Algorithms for advanced battery-management systems”, IEEE Control Syst. Mag., Vol. 30, pp. 49–68, 2010.
50
[25] K. Sagara, S.D. Sharma, “Latent heat storage materials and systems: a review”, Int. J., Green Energy Vol. 2, pp. 1–56, 2005.
[26] Y.H. Wang, Y.T. Yang, “Numerical Simulation of Portable Electronic Cooling Using Phase Change Material”, Master Thesis, Department of Mechanical Engineering, 2011.
[27] A.D. Brent, K.J. Reid, V.R. Voller, “Enthalpy-porosity technique for modeling convection-diffusion phase-change: application to the melting of a pure metal”, Numerical Heat Transfer, Vol. 13, pp. 297-318, 1988.
[28] B. Nichols, C. Hirt, “Volume of fluid (VOF) method for the dynamics of free boundaries Journal of Computational Physics”, Vol. 39, pp. 201, 1981.
[29] S. V. Patankar, “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York, 1980.
[30] D.L. Cherng, “Analysis on air flow of heat dissipation for lithium battery module”, Final project report of National Chung-Shan Institute of Science and Technology, Project number: SBD9960050, 2010.