簡易檢索 / 詳目顯示

研究生: 顏孟畿
Yen, Meng-Chi
論文名稱: 嶄新的腫瘤治療方式:經由皮膚傳遞IDO shRNA
The novel approach for cancer therapy:by skin delivery of IDO shRNA
指導教授: 賴明德
LAI, MING-DERG
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 103
中文關鍵詞: 樹突狀細胞腫瘤免疫治療基因槍吲哚胺23雙加氧酶短髮夾RNA
外文關鍵詞: dendritic cell, cancer immunotherapy, gene gun, indoleamine 23-dioxygenase(IDO), short hairpin RNA(shRNA)
相關次數: 點閱:154下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 吲哚胺2,3 雙加氧酶 (Indoleamine 2,3-dioxygenase; IDO) 是色胺酸代謝路徑的速率決定酵素,也被報導是樹突狀細胞 (dendritic cells) 的免疫負向調控因子。當樹狀細胞表現IDO 時,會抑制T 細胞增生與活化,而免疫調節T 細胞 (regulatory T cells)被誘發增殖,進而抑制免疫反應,所以我們假設當樹突狀細胞內的IDO 被抑制時有助於引發抗腫瘤的免疫反應。短髮夾型RNA (short hairpin RNA; shRNA) 是一種有效抑制單一基因表現的方式,因此我們構築可生成對專一抑制IDO 的shRNA 的質體,首先分別確認in vitro 與in vivo 能抑制其mRNA 與蛋白質表現後,接下來利用基因槍從腹部皮膚傳遞的方式送入IDO shRNA。結果發現能可減緩小鼠膀胱癌細胞MBT-2與直腸癌細胞CT-26 的腫瘤生長速度與與延長小鼠生存時間;此外若從接受過IDO shRNA 的小鼠分離CD11c+的細胞過繼轉移 (adoptive transfer) 到植入過MBT-2 的小鼠也能減緩腫瘤的生長,此結果顯示CD11c+樹突狀細胞在引發免疫反應時的確扮演重要角色。而經由T 細胞剔除的實驗,得知對抗腫瘤CD4+與CD8+ T 細胞都參與在IDO shRNA 誘發的免疫反應中,其中CD8+ T 細胞扮演比較重要的角色。除此之外使用針對不同序列的IDO shRNA 也得到相似的治療效用,傳遞能抵抗shRNA 的IDO使其表現在樹突狀細胞則失去了對抗腫瘤的效用,此結果顯示此種抑制腫瘤的免疫反應的確是經由IDO,並且不是因為shRNA 作用在錯誤目標引起。而且使用不同的質體DNA 量去刺激小鼠,也可以發現治療的效果與IDO shRNA 的量呈現正相關,更加強了IDO siRNA 的治療效果不是經由非專一性的作用而誘發。IDO shRNA 與Her2/neu DNA 疫苗融合後,更加強MBT-2 腫瘤治療的效果,也暗示IDO shRNA 具有成為免疫佐劑的潛力。另ㄧ方面,若使用與IDO 相似的蛋白質IDO2 的shRNA,也誘導出相似的免疫反應,腫瘤的免疫細胞浸潤以及細胞毒殺反應都顯示出相似的模式,但IDO 與IDO2 之間的關聯目前仍無法釐清。在本次研究中證明只要經由皮膚傳遞IDO shRNA 就能降低in vivo 的樹突狀細胞IDO 表現並引發免疫反應,而且與Her2/Neu DNA 疫苗合併使用能更增強治療效果。此外,IDO2 功能可能也如同IDO,參與免疫反應的調控。

    Indoleamine 2,3-dioxygenase (IDO) is a rate-limiting enzyme of tryptophan degradating pathway and a negative immunoregulatory molecule of dendritic cells. IDO-expressing dendritic cells suppress proliferation and activation of effector T cells and induce proliferation of regulatory T cells. We hypothesized that knockdown the IDO expression of dendritic cells could elicit the antitumor response. Besides the IDO specific inhibitor, short hairpin RNA (shRNA) is another approach to silence the IDO expression of dendritic cells. Thus, the IDO specific short hairpin RNA (shRNA) was constructed and evaluated the silencing efficiency on the mRNA and protein expression in vitro and in vivo. We observed the slower tumor growth rate and better survival rate on mouse bladder tumor cell MBT-2 and mouse colon cancer cell CT-26 bearing mice after IDO shRNA vaccinated. Adoptive transfer of CD11c+ cells which were isolated from IDO shRNA vaccinated mice was shown delayed tumor progression. The data indicated that IDO low-expressing CD11c+ cells played a critical role in antitumor response. Depletion the CD8+ and CD4+T cells abolished the IDO shRNA induced antitumor responses. Mice vaccinated with IDO shRNA targeting to different sequence induced similar therapeutic efficacy. IDO shRNA-resistant IDO expression vector delivered into dendritic cells abolished the therapeutic effect. It was suggesting that the therapeutic effect is not due to off-target and is dependent on IDO. In addition, the therapeutic effect was dependent on the vaccinated dose of IDO shRNA plasmid. IDO shRNA fused with Her2/neu DNA vaccine further enhanced the therapeutic effect on the bladder cancer model. On the other hand, IDO2 was an IDO-like protein. IDO2 shRNA induced similar antitumor immune responses with IDO siRNA, but the interaction between IDO and IDO2 was still unknown in this study. In conclusion, we provide a novel and simple approach to induce the antitumor immune response through skin delivery of IDO shRNA. Her2/neu DNA vaccine fused with IDO shRNA further enhanced the therapeutic efficacy. Moreover, the IDO2 might involve in immune regulation of dendritic cells.

    I 緒論 1 I-1 腫瘤免疫治療 1 I-2 負向免疫調控因子:吲哚胺2,3 雙加氧酶 5 I-3 吲哚胺2,3 雙加氧酶家族的新成員:IDO2 8 I-4 以質體DNA 為基礎的基因治療 9 I-5 以shRNA 作基因治療 10 I-6 實驗目標與策略 11 II 材料與方法 15 II-1 細胞培養 15 II-2 質體構築 15 II-2-a shRNA 的構築 15 II-2-b IDO 與IDO2 表現質體的構築 16 II-2-c IDO compensation 質體的構築 16 II-2-d Neu-scramble IDO siRNA 質體的構築 17 II-2-e 質體的製備 17 II-3 西方點墨法 18 II-4 IDO 酵素活性測試 18 II-4-a In vitro 酵素反應 18 II-4-b HPLC 偵測 19 II-5 單株抗體製備與免疫細胞剔除 19 II-5-a 融合細胞瘤培養 19 II-5-b 免疫細胞剔除 19 II-6 反轉錄聚合酶連鎖反應與即時定量聚合酶連鎖反應 20 II-7 實驗動物 21 II-8 植入腫瘤與評估治療效果 21 II-8-a 腫瘤植入 21 II-8-b 評估治療效果 21 II-9 經由皮膚傳遞DNA 22 II-10 在in vivo 抑制IDO 的表現 22 II-10-a In vitro 偵測CD11c+細胞IDO mRNA 表現 22 II-10-b In vivo 偵測樹突狀細胞IDO 蛋白質表現 22 II-11 分析免疫細胞浸潤 23 II-12 CD11c+細胞過繼轉移 24 II-13 細胞毒殺活性分析 24 II-14 以金粒子包覆DNA 25 II-15 繪圖軟體與統計分析 26 III 結果 27 III-1 IDO siRNA 的作用 27 III-2 IDO siRNA 引發對抗腫瘤的免疫反應 28 III-3 分析IDO siRNA 所引發的免疫反應 29 III-4 抗腫瘤的免疫反應的確經由IDO siRNA 而活化 30 III-5 融合DNA 疫苗提昇免疫治療的效果 31 III-6 IDO2 siRNA 也能引發抗腫瘤的免疫反應 31 III-7 分析IDO2 引發的免疫反應 32 IV 討論 33 IV-1 從皮膚傳遞IDO siRNA 引發治療腫瘤的效果 33 IV-2 參與抗腫瘤反應的免疫細胞 34 IV-3 排除非專一性的IDO siRNA 作用的可能性 36 IV-4 IDO 抑制劑與IDO siRNA 37 IV-5 IDO siRNA 的使用劑量與樹突狀細胞的活化 40 IV-6 IDO 與IDO2 的關聯性 41 IV-7 未來的應用與展望 42 IV-7-a 樹突狀細胞的活化機制 42 IV-7-b 尋找免疫治療的目標基因 44 IV-7-c 改進的動物腫瘤模式:原位癌 45 V 結論 47 VI 參考資料 48 VII 附圖與表格 58 自述 88 已發表論文 89

    1. Agaugue, S., L. Perrin-Cocon, F. Coutant, P. Andre, and V. Lotteau. 2006. 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J Immunol. 177:2061-71.
    2. Alexander, A.N., M.K. Huelsmeyer, A. Mitzey, R.R. Dubielzig, I.D. Kurzman, E.G. Macewen, and D.M. Vail. 2006. Development of an allogeneic whole-cell tumor vaccine expressing xenogeneic gp100 and its implementation in a phase II clinical trial in canine patients with malignant melanoma. Cancer Immunol Immunother. 55:433-42.
    3. Alves, G.J., L. Vismari, J.C. Florio, and J. Palermo-Neto. 2006. Cohabitation with a sick cage mate: Effects on noradrenaline turnover and neutrophil activity. Neurosci Res. 56:172-9.
    4. Bachtarzi, H., M. Stevenson, and K. Fisher. 2008. Cancer gene therapy with targeted adenoviruses. Expert Opin Drug Deliv. 5:1231-40.
    5. Ball, H.J., A. Sanchez-Perez, S. Weiser, C.J. Austin, F. Astelbauer, J. Miu, J.A. McQuillan, R. Stocker, L.S. Jermiin, and N.H. Hunt. 2007. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene. 396:203-13.
    6. Barry, M.A., and S.A. Johnston. 1997. Biological features of genetic immunization. Vaccine. 15:788-91.
    7. Bozza, S., F. Fallarino, L. Pitzurra, T. Zelante, C. Montagnoli, S. Bellocchio, P. Mosci, C. Vacca, P. Puccetti, and L. Romani. 2005. A crucial role for tryptophan catabolism at the host/Candida albicans interface. J Immunol. 174:2910-8.
    8. Brandacher, G., A. Perathoner, R. Ladurner, S. Schneeberger, P. Obrist, C. Winkler, E.R. Werner, G. Werner-Felmayer, H.G. Weiss, G. Gobel, R. Margreiter, A. Konigsrainer, D. Fuchs, and A. Amberger. 2006. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin Cancer Res. 12:1144-51.
    9. Casalini, P., M.V. Iorio, E. Galmozzi, and S. Menard. 2004. Role of HER receptors family in development and differentiation. J Cell Physiol. 200:343-50.
    10. Chakravarty, P.K., C. Guha, A. Alfieri, V. Beri, Z. Niazova, N.J. Deb, Z. Fan, E.K. Thomas, and B. Vikram. 2006. Flt3L therapy following localized tumor irradiation generates long-term protective immune response in metastatic lung cancer: its implication in designing a vaccination strategy. Oncology. 70:245-54.
    11. Chen, W., X. Liang, A.J. Peterson, D.H. Munn, and B.R. Blazar. 2008a. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol. 181:5396-404.
    12. Chen, Z.Y., K. Liang, M.X. Xie, X.F. Wang, Q. Lu, and J. Zhang. 2008b. Induced apoptosis with ultrasound-mediated microbubble destruction and shRNA targeting survivin in transplanted tumors. Adv Ther. 26:96-106.
    13. Choi, B.K., Y.H. Kim, W.J. Kang, S.K. Lee, K.H. Kim, S.M. Shin, W.M. Yokoyama, T.Y. Kim, and B.S. Kwon. 2007. Mechanisms involved in synergistic anticancer immunity of anti-4-1BB and anti-CD4 therapy. Cancer Res. 67:8891-9.
    14. Cormier, J.N., M.L. Salgaller, T. Prevette, K.C. Barracchini, L. Rivoltini, N.P. Restifo, S.A. Rosenberg, and F.M. Marincola. 1997. Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A. Cancer J Sci Am. 3:37-44.
    15. Dai, W., and S.L. Gupta. 1990. Molecular cloning, sequencing and expression of human interferon-gamma-inducible indoleamine 2,3-dioxygenase cDNA. Biochem Biophys Res Commun. 168:1-8.
    16. Darville, T., C.W. Andrews, Jr., J.D. Sikes, P.L. Fraley, L. Braswell, and R.G. Rank. 2001. Mouse strain-dependent chemokine regulation of the genital tract T helper cell type 1 immune response. Infect Immun. 69:7419-24.
    17. De Luca, A., C. Montagnoli, T. Zelante, P. Bonifazi, S. Bozza, S. Moretti, C. D'Angelo, C. Vacca, L. Boon, F. Bistoni, P. Puccetti, F. Fallarino, and L. Romani. 2007. Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J Immunol. 179:5999-6008.
    18. De Vleeschouwer, S., S. Fieuws, S. Rutkowski, F. Van Calenbergh, J. Van Loon, J. Goffin, R. Sciot, G. Wilms, P. Demaerel, M. Warmuth-Metz, N. Soerensen, J.E. Wolff, S. Wagner, E. Kaempgen, and S.W. Van Gool. 2008. Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res. 14:3098-104.
    19. Della Chiesa, M., S. Carlomagno, G. Frumento, M. Balsamo, C. Cantoni, R. Conte, L. Moretta, A. Moretta, and M. Vitale. 2006. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood. 108:4118-25.
    20. Devi, G.R. 2006. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 13:819-29.
    21. Doyen, V., M. Rubio, D. Braun, T. Nakajima, J. Abe, H. Saito, G. Delespesse, and M. Sarfati. 2003. Thrombospondin 1 is an autocrine negative regulator of human dendritic cell activation. J Exp Med. 198:1277-83.
    22. Dranoff, G., E. Jaffee, A. Lazenby, P. Golumbek, H. Levitsky, K. Brose, V. Jackson, H. Hamada, D. Pardoll, and R.C. Mulligan. 1993. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A. 90:3539-43.
    23. Duval, L., H. Schmidt, K. Kaltoft, K. Fode, J.J. Jensen, S.M. Sorensen, M.I. Nishimura, and H. von der Maase. 2006. Adoptive transfer of allogeneic cytotoxic T lymphocytes equipped with a HLA-A2 restricted MART-1 T-cell receptor: a phase I trial in metastatic melanoma. Clin Cancer Res. 12:1229-36.
    24. Evel-Kabler, K., and S.Y. Chen. 2006. Inhibition of antigen-presentation attenuators to augment vaccines. Curr Opin Mol Ther. 8:24-30.
    25. Evel-Kabler, K., X.T. Song, M. Aldrich, X.F. Huang, and S.Y. Chen. 2006. SOCS1 restricts dendritic cells' ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest. 116:90-100.
    26. Fallarino, F., U. Grohmann, S. You, B.C. McGrath, D.R. Cavener, C. Vacca, C. Orabona, R. Bianchi, M.L. Belladonna, C. Volpi, P. Santamaria, M.C. Fioretti, and P. Puccetti. 2006. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J Immunol. 176:6752-61.
    27. Feltquate, D.M., S. Heaney, R.G. Webster, and H.L. Robinson. 1997. Different T helper cell types and antibody isotypes generated by saline and gene gun DNA immunization. J Immunol. 158:2278-84.
    28. Ferrone, C.R., M.A. Perales, S.M. Goldberg, C.J. Somberg, D. Hirschhorn-Cymerman, P.D. Gregor, M.J. Turk, T. Ramirez-Montagut, J.S. Gold, A.N. Houghton, and J.D. Wolchok. 2006. Adjuvanticity of plasmid DNA encoding cytokines fused to immunoglobulin Fc domains. Clin Cancer Res. 12:5511-9.
    29. Frumento, G., T. Piazza, E. Di Carlo, and S. Ferrini. 2006. Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets. 6:233-7.
    30. Garg, S., A. Oran, J. Wajchman, S. Sasaki, C.H. Maris, J.A. Kapp, and J. Jacob. 2003. Genetic tagging shows increased frequency and longevity of antigen-presenting, skin-derived dendritic cells in vivo. Nat Immunol. 4:907-12.
    31. Gilboa, E. 2007. DC-based cancer vaccines. J Clin Invest. 117:1195-203.
    32. Graziano, D.F., and O.J. Finn. 2005. Tumor antigens and tumor antigen discovery. Cancer Treat Res. 123:89-111.
    33. Gurzov, E.N., and M. Izquierdo. 2006. RNA interference against Hec1 inhibits tumor growth in vivo. Gene Ther. 13:1-7.
    34. Hayashi, T., S.P. Rao, K. Takabayashi, J.H. Van Uden, R.S. Kornbluth, S.M. Baird, M.W. Taylor, D.A. Carson, A. Catanzaro, and E. Raz. 2001. Enhancement of innate immunity against Mycobacterium avium infection by immunostimulatory DNA is mediated by indoleamine 2,3-dioxygenase. Infect Immun. 69:6156-64.
    35. Hornung, V., J. Schlender, M. Guenthner-Biller, S. Rothenfusser, S. Endres, K.K. Conzelmann, and G. Hartmann. 2004. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J Immunol. 173:5935-43.
    36. Hou, D.Y., A.J. Muller, M.D. Sharma, J. DuHadaway, T. Banerjee, M. Johnson, A.L. Mellor, G.C. Prendergast, and D.H. Munn. 2007. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 67:792-801.
    37. Hsieh, C.Y., C.A. Chen, C.Y. Huang, M.C. Chang, C.N. Lee, Y.N. Su, and W.F. Cheng. 2007. IL-6-encoding tumor antigen generates potent cancer immunotherapy through antigen processing and anti-apoptotic pathways. Mol Ther. 15:1890-7.
    38. Ino, K., N. Yoshida, H. Kajiyama, K. Shibata, E. Yamamoto, K. Kidokoro, N. Takahashi, M. Terauchi, A. Nawa, S. Nomura, T. Nagasaka, O. Takikawa, and F. Kikkawa. 2006. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br J Cancer. 95:1555-61.
    39. Jarnicki, A.G., J. Lysaght, S. Todryk, and K.H. Mills. 2006. Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol. 177:896-904.
    40. Kamlah, F., B.G. Eul, S. Li, N. Lang, L.M. Marsh, W. Seeger, F. Grimminger, F. Rose, and J. Hanze. 2008. Intravenous injection of siRNA directed against hypoxia-inducible factors prolongs survival in a Lewis lung carcinoma cancer model. Cancer Gene Ther. 16:195-205.
    41. Kelso, A., A.B. Troutt, E. Maraskovsky, N.M. Gough, L. Morris, M.H. Pech, and J.A. Thomson. 1991. Heterogeneity in lymphokine profiles of CD4+ and CD8+ T cells and clones activated in vivo and in vitro. Immunol Rev. 123:85-114.
    42. Kim, T.W., C.F. Hung, M. Ling, J. Juang, L. He, J.M. Hardwick, S. Kumar, and T.C. Wu. 2003. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest. 112:109-17.
    43. Kim, T.W., J.H. Lee, L. He, D.A. Boyd, J.M. Hardwick, C.F. Hung, and T.C. Wu. 2005. Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res. 65:309-16.
    44. Lee, Y.J., A. Imsumran, M.Y. Park, S.Y. Kwon, H.I. Yoon, J.H. Lee, C.G. Yoo, Y.W. Kim, S.K. Han, Y.S. Shim, W. Piao, H. Yamamoto, Y. Adachi, D.P. Carbone, and C.T. Lee. 2007. Adenovirus expressing shRNA to IGF-1R enhances the chemosensitivity of lung cancer cell lines by blocking IGF-1 pathway. Lung Cancer. 55:279-86.
    45. Li, H., X. Ou, and J. Xiong. 2007. Modified HPV16 E7/HSP70 DNA vaccine with high safety and enhanced cellular immunity represses murine lung metastatic tumors with downregulated expression of MHC class I molecules. Gynecol Oncol. 104:564-71.
    46. Lin, C.C., C.W. Chou, A.L. Shiau, C.F. Tu, T.M. Ko, Y.L. Chen, B.C. Yang, M.H. Tao, and M.D. Lai. 2004. Therapeutic HER2/Neu DNA vaccine inhibits mouse tumor naturally overexpressing endogenous neu. Mol Ther. 10:290-301.
    47. Lin, C.C., C.F. Tu, M.C. Yen, M.C. Chen, W.J. Hsieh, W.C. Chang, W.T. Chang, and M.D. Lai. 2007. Inhibitor of heat-shock protein 90 enhances the antitumor effect of DNA vaccine targeting clients of heat-shock protein. Mol Ther. 15:404-10.
    48. Lin, C.C., M.C. Yen, C.M. Lin, S.S. Huang, H.J. Yang, N.H. Chow, and M.D. Lai. 2008. Delivery of noncarrier naked DNA vaccine into the skin by supersonic flow induces a polarized T helper type 1 immune response to cancer. J Gene Med. 10:679-89.
    49. Littlejohn, T.K., O. Takikawa, R.J. Truscott, and M.J. Walker. 2003. Asp274 and his346 are essential for heme binding and catalytic function of human indoleamine 2,3-dioxygenase. J Biol Chem. 278:29525-31.
    50. Lob, S., A. Konigsrainer, R. Schafer, H.G. Rammensee, G. Opelz, and P. Terness. 2008a. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood. 111:2152-4.
    51. Lob, S., A. Konigsrainer, D. Zieker, B.L. Brucher, H.G. Rammensee, G. Opelz, and P. Terness. 2008b. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol Immunother.
    52. Lotfi, R., H. Schrezenmeier, and M.T. Lotze. 2009. Immunotherapy for cancer: promoting innate immunity. Front Biosci. 14:818-32.
    53. Marteau, F., N.S. Gonzalez, D. Communi, M. Goldman, and J.M. Boeynaems. 2005. Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood. 106:3860-6.
    54. Melief, C.J. 2008. Cancer immunotherapy by dendritic cells. Immunity. 29:372-83.
    55. Mellor, A.L., B. Baban, P. Chandler, B. Marshall, K. Jhaver, A. Hansen, P.A. Koni, M. Iwashima, and D.H. Munn. 2003. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J Immunol. 171:1652-5.
    56. Mellor, A.L., and D.H. Munn. 2004. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol. 4:762-74.
    57. Metz, R., J.B. Duhadaway, U. Kamasani, L. Laury-Kleintop, A.J. Muller, and G.C. Prendergast. 2007. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 67:7082-7.
    58. Miller, A.M., V. Ozenci, R. Kiessling, and P. Pisa. 2005. Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J Immunother. 28:389-95.
    59. Muller, A.J., M.D. Sharma, P.R. Chandler, J.B. Duhadaway, M.E. Everhart, B.A. Johnson, 3rd, D.J. Kahler, J. Pihkala, A.P. Soler, D.H. Munn, G.C. Prendergast, and A.L. Mellor. 2008. Chronic inflammation that facilitates tumor progression creates local immune suppression by inducing indoleamine 2,3 dioxygenase. Proc Natl Acad Sci U S A. 105:17073-8.
    60. Munn, D.H., and A.L. Mellor. 2007. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J Clin Invest. 117:1147-54.
    61. Munn, D.H., M.D. Sharma, D. Hou, B. Baban, J.R. Lee, S.J. Antonia, J.L. Messina, P. Chandler, P.A. Koni, and A.L. Mellor. 2004. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J Clin Invest. 114:280-90.
    62. Munn, D.H., M.D. Sharma, J.R. Lee, K.G. Jhaver, T.S. Johnson, D.B. Keskin, B. Marshall, P. Chandler, S.J. Antonia, R. Burgess, C.L. Slingluff, Jr., and A.L. Mellor. 2002. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science. 297:1867-70.
    63. Munn, D.H., M. Zhou, J.T. Attwood, I. Bondarev, S.J. Conway, B. Marshall, C. Brown, and A.L. Mellor. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 281:1191-3.
    64. Nelson, D.E., D.P. Virok, H. Wood, C. Roshick, R.M. Johnson, W.M. Whitmire, D.D. Crane, O. Steele-Mortimer, L. Kari, G. McClarty, and H.D. Caldwell. 2005. Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc Natl Acad Sci U S A. 102:10658-63.
    65. Nemunaitis, J., M. Nemunaitis, N. Senzer, P. Snitz, C. Bedell, P. Kumar, B. Pappen, P.B. Maples, D. Shawler, and H. Fakhrai. 2009. Phase II trial of Belagenpumatucel-L, a TGF-beta2 antisense gene modified allogeneic tumor vaccine in advanced non small cell lung cancer (NSCLC) patients. Cancer Gene Ther. [Epub ahead of print]
    66. Palmer, D.H., R.S. Midgley, N. Mirza, E.E. Torr, F. Ahmed, J.C. Steele, N.M. Steven, D.J. Kerr, L.S. Young, and D.H. Adams. 2009. A phase II study of adoptive immunotherapy using dendritic cells pulsed with tumor lysate in patients with hepatocellular carcinoma. Hepatology. 49:124-32.
    67. Pan, K., H. Wang, M.S. Chen, H.K. Zhang, D.S. Weng, J. Zhou, W. Huang, J.J. Li, H.F. Song, and J.C. Xia. 2008. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J Cancer Res Clin Oncol. 134:1247-53.
    68. Park, K., W.J. Kim, Y.H. Cho, Y.I. Lee, H. Lee, S. Jeong, E.S. Cho, S.I. Chang, S.K. Moon, B.S. Kang, Y.J. Kim, and S.H. Cho. 2008. Cancer gene therapy using adeno-associated virus vectors. Front Biosci. 13:2653-9.
    69. Peachman, K.K., M. Rao, and C.R. Alving. 2003. Immunization with DNA through the skin. Methods. 31:232-42.
    70. Perales, M.A., J. Yuan, S. Powel, H.F. Gallardo, T.S. Rasalan, C. Gonzalez, G. Manukian, J. Wang, Y. Zhang, P.B. Chapman, S.E. Krown, P.O. Livingston, S. Ejadi, K.S. Panageas, M.E. Engelhorn, S.L. Terzulli, A.N. Houghton, and J.D. Wolchok. 2008. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol Ther. 16:2022-9.
    71. Porgador, A., K.R. Irvine, A. Iwasaki, B.H. Barber, N.P. Restifo, and R.N. Germain. 1998. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med. 188:1075-82.
    72. Prell, R.A., L. Gearin, A. Simmons, M. Vanroey, and K. Jooss. 2006. The anti-tumor efficacy of a GM-CSF-secreting tumor cell vaccine is not inhibited by docetaxel administration. Cancer Immunol Immunother. 55:1285-93.
    73. Prendergast, G.C. 2008. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene. 27:3889-900.
    74. Rice, J., C.H. Ottensmeier, and F.K. Stevenson. 2008. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer. 8:108-20.
    75. Riesenberg, R., C. Weiler, O. Spring, M. Eder, A. Buchner, T. Popp, M. Castro, R. Kammerer, O. Takikawa, R.A. Hatz, C.G. Stief, A. Hofstetter, and W. Zimmermann. 2007. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin Cancer Res. 13:6993-7002.
    76. Rosenberg, S.A., N.P. Restifo, J.C. Yang, R.A. Morgan, and M.E. Dudley. 2008. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 8:299-308.
    77. Schechter, A.L., D.F. Stern, L. Vaidyanathan, S.J. Decker, J.A. Drebin, M.I. Greene, and R.A. Weinberg. 1984. The neu oncogene: an erb-B-related gene encoding a 185,000-Mr tumour antigen. Nature. 312:513-6.
    78. Sharma, M.D., B. Baban, P. Chandler, D.Y. Hou, N. Singh, H. Yagita, M. Azuma, B.R. Blazar, A.L. Mellor, and D.H. Munn. 2007. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest. 117:2570-82.
    79. Shen, L., K. Evel-Kabler, R. Strube, and S.Y. Chen. 2004. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat Biotechnol. 22:1546-53.
    80. Shiratsuchi, Y., T. Iyoda, N. Tanimoto, D. Kegai, K. Nagata, and Y. Kobayashi. 2007. Infiltrating neutrophils induce allospecific CTL in response to immunization with apoptotic cells via MCP-1 production. J Leukoc Biol. 81:412-20.
    81. Sioud, M. 2005. Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol. 348:1079-90.
    82. Slamon, D.J., W. Godolphin, L.A. Jones, J.A. Holt, S.G. Wong, D.E. Keith, W.J. Levin, S.G. Stuart, J. Udove, A. Ullrich, and et al. 1989. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 244:707-12.
    83. Slingluff, C.L., Jr., G. Yamshchikov, P. Neese, H. Galavotti, S. Eastham, V.H. Engelhard, D. Kittlesen, D. Deacon, S. Hibbitts, W.W. Grosh, G. Petroni, R. Cohen, C. Wiernasz, J.W. Patterson, B.P. Conway, and W.G. Ross. 2001. Phase I trial of a melanoma vaccine with gp100(280-288) peptide and tetanus helper peptide in adjuvant: immunologic and clinical outcomes. Clin Cancer Res. 7:3012-24.
    84. Snyder, L.A., T.J. Goletz, G.R. Gunn, F.F. Shi, M.C. Harris, K. Cochlin, C. McCauley, S.G. McCarthy, P.J. Branigan, and D.M. Knight. 2006. A MUC1/IL-18 DNA vaccine induces anti-tumor immunity and increased survival in MUC1 transgenic mice. Vaccine. 24:3340-52.
    85. Stein, U., W. Walther, A. Stege, A. Kaszubiak, I. Fichtner, and H. Lage. 2008. Complete in vivo reversal of the multidrug resistance phenotype by jet-injection of anti-MDR1 short hairpin RNA-encoding plasmid DNA. Mol Ther. 16:178-86.
    86. Stoecklinger, A., I. Grieshuber, S. Scheiblhofer, R. Weiss, U. Ritter, A. Kissenpfennig, B. Malissen, N. Romani, F. Koch, F. Ferreira, J. Thalhamer, and P. Hammerl. 2007. Epidermal langerhans cells are dispensable for humoral and cell-mediated immunity elicited by gene gun immunization. J Immunol. 179:886-93.
    87. Sumida, S.M., P.F. McKay, D.M. Truitt, M.G. Kishko, J.C. Arthur, M.S. Seaman, S.S. Jackson, D.A. Gorgone, M.A. Lifton, N.L. Letvin, and D.H. Barouch. 2004. Recruitment and expansion of dendritic cells in vivo potentiate the immunogenicity of plasmid DNA vaccines. J Clin Invest. 114:1334-42.
    88. Tacken, P.J., I.J. de Vries, R. Torensma, and C.G. Figdor. 2007. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol. 7:790-802.
    89. Tai, C.K., and N. Kasahara. 2008. Replication-competent retrovirus vectors for cancer gene therapy. Front Biosci. 13:3083-95.
    90. Terness, P., T.M. Bauer, L. Rose, C. Dufter, A. Watzlik, H. Simon, and G. Opelz. 2002. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med. 196:447-57.
    91. Triozzi, P.L., W. Aldrich, K.O. Allen, R.R. Carlisle, A.F. LoBuglio, and R.M. Conry. 2005. Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J Immunother. 28:382-8.
    92. Tu, C.F., C.C. Lin, M.C. Chen, T.M. Ko, C.M. Lin, Y.C. Wang, and M.D. Lai. 2007. Autologous neu DNA vaccine can be as effective as xenogenic neu DNA vaccine by altering administration route. Vaccine. 25:719-28.
    93. Underwood, M., J. Bartlett, J. Reeves, D.S. Gardiner, R. Scott, and T. Cooke. 1995. C-erbB-2 gene amplification: a molecular marker in recurrent bladder tumors? Cancer Res. 55:2422-30.
    94. Uyttenhove, C., L. Pilotte, I. Theate, V. Stroobant, D. Colau, N. Parmentier, T. Boon, and B.J. Van den Eynde. 2003. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 9:1269-74.
    95. Wang, F., E. Bade, C. Kuniyoshi, L. Spears, G. Jeffery, V. Marty, S. Groshen, and J. Weber. 1999. Phase I trial of a MART-1 peptide vaccine with incomplete Freund's adjuvant for resected high-risk melanoma. Clin Cancer Res. 5:2756-65.
    96. Weber, J., W. Boswell, J. Smith, E. Hersh, J. Snively, M. Diaz, S. Miles, X. Liu, M. Obrocea, Z. Qiu, and A. Bot. 2008. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother. 31:215-23.
    97. Witkiewicz, A., T.K. Williams, J. Cozzitorto, B. Durkan, S.L. Showalter, C.J. Yeo, and J.R. Brody. 2008. Expression of indoleamine 2,3-dioxygenase in metastatic pancreatic ductal adenocarcinoma recruits regulatory T cells to avoid immune detection. J Am Coll Surg. 206:849-54; discussion 854-6.
    98. Yen, M.C., C.C. Lin, Y.L. Chen, S.S. Huang, H.J. Yang, C.P. Chang, H.Y. Lei, and M.D. Lai. 2009. A Novel Cancer Therapy by Skin Delivery of Indoleamine 2,3-Dioxygenase siRNA. Clin Cancer Res. 15:641-649.
    99. Yoon, S.H., J.M. Lee, H.I. Cho, E.K. Kim, H.S. Kim, M.Y. Park, and T.G. Kim. 2008. Adoptive immunotherapy using human peripheral blood lymphocytes transferred with RNA encoding Her-2/neu-specific chimeric immune receptor in ovarian cancer xenograft model. Cancer Gene Ther. [Epub ahead of print]
    100. Zhao, J., M. Kuroki, H. Shibaguchi, L. Wang, Q. Huo, N. Takami, T. Tanaka, and T. Kinugasa. 2008. Recombinant human monoclonal igA antibody against CEA to recruit neutrophils to CEA-expressing cells. Oncol Res. 17:217-22.
    101. Zheng, J.N., D.S. Pei, L.J. Mao, X.Y. Liu, D.D. Mei, B.F. Zhang, Z. Shi, R.M. Wen, and X.Q. Sun. 2009. Inhibition of renal cancer cell growth in vitro and in vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67 encoding mRNA. Cancer Gene Ther. 16:20-32.
    102. Zheng, X., J. Koropatnick, M. Li, X. Zhang, F. Ling, X. Ren, X. Hao, H. Sun, C. Vladau, J.A. Franek, B. Feng, B.L. Urquhart, R. Zhong, D.J. Freeman, B. Garcia, and W.P. Min. 2006. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J Immunol. 177:5639-46.

    下載圖示 校內:2010-04-27公開
    校外:2010-04-27公開
    QR CODE