簡易檢索 / 詳目顯示

研究生: 施政良
Shih, Zheng-Liang
論文名稱: 氣壓動圈式伺服閥之設計與控制之研究
A Research on Design and Control of Pneumatic Servo Valve Driven by Moving Coil Motor
指導教授: 施明璋
Shih, Ming-Chang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 60
中文關鍵詞: 氣壓閥伺服閥動圈式線性馬達模糊控制器基因演算法
外文關鍵詞: Pneumatic valve, servo valve, moving coil motor, fuzzy controller, genetic algorithm
相關次數: 點閱:86下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在控制氣壓系統時,氣壓閥可說是時常使用到的控制元件,不論是方向、流量或是壓力控制都有機會用到。故氣壓閥的改良研發對控制氣壓系統有重大影響,本文利用了動圈式線性馬達、基因演算法及模糊控制理論來進行改良。
    本文選用了動圈式線性馬達作為氣壓閥閥軸之致動器,利用其在短行程時能提供高響應、線性出力的優點,以達到氣壓閥響應改善。對氣壓系統來說,要獲得精確的數學模型是很困難的,故本文使用對精確數學模型要求度低的基因演算法和模糊控制理論來設計控制器。
    本文應用了非線性PI控制器及非線性自調式模糊控制器。實驗結果兩者的從零到100%行程最大流量(218L/min)的上升時間在時分別為4ms和3.5ms,使氣壓伺服閥具有快速的響應。

    In this paper, the moving coil motor is used as the actuator of valve shaft in the pneumatic servo valve. The moving coil motor can provide some advantages, like: the high acceleration, linear output in short stroke. We use these advantages to improve the performance of the pneumatic valve.
    For the pneumatic system, it is very difficult to obtain an accurate mathematical mode, so this paper uses the fuzzy control theory that do not require an accurate mathematical model to design the controller.
    From the experimental results, it is observed that the rise time from zero flow rate to maximum flow rate (100% stroke) is close to 3.5ms. It can be seen that this pneumatic servo vale can be controlled very quickly.

    中文摘要 I Extended Abstract II 誌謝 XI 目錄 XII 表目錄 XIV 圖目錄 XV 符號說明 XVIII 第一章 緒論 1 1-1 前言 1 1-2 研究動機 3 1-3 研究目的 3 1-4 本文架構 3 第二章 氣壓伺服閥系統及架構 5 2-1氣壓伺服閥系統架構 5 2-2 氣壓伺服閥機構設計 7 2-3 實驗設備 9 第三章 氣壓伺服閥系統數學模型 16 3-1 氣壓伺服閥數學模型 16 3-2 動圈式線性馬達 20 3-3 系統數學模型 22 3-4 系統架設 25 第四章 氣壓伺服閥控制器設計 28 4-1非線性PI控制器 28 4-2非線性自調式模糊控制器 39 第五章 實驗結果與討論 50 5-1 氣壓閥流量特性 50 5-2 閥軸定位與流量控制 52 第六章 結論與未來建議 58 6-1結論 58 6-2未來建議 58 參考文獻 59

    [1]Antony Barber, “Pneumatic Handbook”, Elsevier Advanced Technology, 1997.
    [2]Lansky. Z. J, “Industrial Pneumatic Control”, New York: M. Dekker, 1986.
    [3]呂淮熏, 黃勝銘, “氣液壓學”, 高立圖書有限公司, 民國90年。
    [4]Mocloy and Martin, “Control of Fluid Power”, 2nd , Ellis Horwood Limited, 1980.
    [5] Herbert E. Merritt, “Hydraulic Control Systems”, New York: John Wiley, 1967.
    [6]J. H. Holland, “Outline of a Logical Theory of Adaptive Systems”, Journal of the Association for Computing Machinery, Vol. 3, pp.297-314, 1962.
    [7] J. H. Holland, “Adaptation in Natural and Artificial Systems”, University of Michigan Press, Ann Arbor, 1975.
    [8]M. Gen and R. Cheng, “Genetic Algorithms and Engineer Design”, John Wiley &Sons, 1997.
    [9]黃朝魁, “分散式遺傳演算法於最佳化設計之研究”, 國立中山大學機械工程研究所碩士論文, 民國85年。
    [10]David. E. Goldberg, “Genetic Algorithms in Search, Optimization and Machine Learning”, Addison-Wesley, 1989.
    [11]蕭輔智, “基因演算法於線性馬達之精密定位控制”, 國立中山大學機械工程研究所碩士論文, 民國89年。
    [12]王進德, “類神經網路與模糊控制理論入門與應用”, 全華圖書股份有限公司, 民國96年。
    [13]G. J. Ho, K. R. Pai and M. C. Shih, “A Study of Bi-axial Pneumatic Manipulator Position Control”, National Conference on Mechanical Engineering, 19th, CSME, Taiwan, 2002, pp.427-434.
    [14]賴建名, “壓電致動器驅動油壓控制閥設計與控制之研究”, 國立成功大學工程研究所碩士論文, 2014。
    [15]Baoren Li, Longlong Gao, Gang Yang, “Evaluation and compensation of steady gas flow force on the high-pressure electro-pneumatic servo valve direct-driven by voice coil motor”, FESTO Pneumatic Technology Centre, Huazhong University of Science & Technology, 2012.
    [16]陳祉翔, “油壓伺服閥以音圈線性馬達驅動之設計與控制”, 國立成功大學工程研究所碩士論文, 2015。
    [17]李世筌, “結合 LVDT 之閉迴路動圈式流體傳動比例閥研”, 國立雲林科技大學機械工程研究所碩士論文, 2007。
    [18]Charles L, Phillips, H, Troy Nagle, “Digital control system analysis and design” Pearson Education International Inc, 1994.

    下載圖示 校內:2020-07-05公開
    校外:2020-07-05公開
    QR CODE