簡易檢索 / 詳目顯示

研究生: 潘玟銨
Pan, Wen-An
論文名稱: 人類C1qRp/CD93重組蛋白之功能研究
Functional studies of recombinant human C1qRp/CD93
指導教授: 施桂月
Shi, Guey-Yueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 84
中文關鍵詞: C1qRp/CD93重組蛋白
外文關鍵詞: C1qRp/CD93, recombinant protein
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C1qRp/CD93 是一個表現在單核球細胞、嗜中性球細胞、內皮細胞以及幹細胞表面的高度醣基化蛋白質。CD93在巨噬細胞表面上無法偵測到;相反的,CD93 顯著的表現在血管內皮細胞層。序列比對顯示 CD93 與凝血酶調節素 (thrombomodulin) 在老鼠與人類中皆有很高的結構同源性,而且同屬於第一類型的穿膜蛋白。人類的 CD93 原先被視為 C1q 的細胞表面接受器,而且在活體外的實驗中,針對 CD93 的抗體可以抑制 C1q 依存性的吞噬作用。然而,在活體外的實驗中並沒有清楚的證據可以證明 C1q 和 CD93 之間的直接交互作用;而且在 CD93 缺失的老鼠中,吞噬作用的能力並沒有損壞。因此, CD93 參與在吞噬作用中的功能仍然是有爭議的。最近的研究已經證明了在血液中可偵測到可溶性的 CD93 存在,表示可溶性的 CD93 也許會參與調控某些生理作用。在本研究中,製備 CD93 的重組蛋白以研究其功能。以酵母菌表現系統表現五個表皮生長因子區域 epidermal growth factor (EGF)-like domains (CD93D2), 和五個表皮生長因子區域以及黏液素區域 (EGF with mucin-like domain, CD93D23) 的重組蛋白;而以哺乳動物細胞表現系統再表現 CD93D23 與 CD93的細胞外區域 (extracellular domain of CD93, CD93D123) 的重組蛋白。CD93D2, CD93D23 以及 CD93D123 對於人類臍帶靜脈內皮細胞 (HUVECs) 的生長與移動有刺激的作用。LY294002 與 U0126 可以抑制由 CD93D23 所誘發的 HUVECs 移動現象。我們發現由CD93D23 是經由將 FAK,ERK,PI3K/AKT/eNOS 磷酸化而引發 HUVECs 的趨化作用。以 CD93D23 處理HUVECs 可以刺激間質金屬結合蛋白酶-2 (matrix metalloproteinase-2, MMP-2) 和間質金屬結合蛋白酶-9 (MMP-9) 的產生。在小鼠的血管新生實驗中, CD93D23 可以刺激活體中的血管新生。這些結果顯示 CD93 的重組蛋白可以刺激 HUVECs 的生長、移動、間質金屬結合蛋白酶的製造,以及在活體中引起血管新生,暗示著 CD93 也許是一個促進血管生長的因子。

    C1qRp/CD93 is a highly glycosylated protein expressed on monocytes, neutrophils, endothelial cells, and stem cells. CD93 is not detected on the surface of macrophage, which is a major kind of phagocytic cells; instead, it is markedly expressed on endothelium. Sequence alignment reveals that CD93 shares similar structural homology to thrombomodulin both in human and murine and belongs to type I transmembrane protein. Human CD93 was originally identified as a cell surface receptor of C1q, and certain antibodies directed against CD93 inhibited the C1q-dependent phagocytosis in vitro. However, there is no clear evidence of direct interaction between C1q and CD93 in vitro, and there is no impairment in phagocytic ability of CD93-deficient mice. Consequently, the role of CD93 involved in phagocytosis remained controversial. Recent study has demonstrated that soluble CD93 is detected in human plasma indicating that soluble CD93 might participate in some physiological processes. In this study, CD93 recombinant proteins were prepared to investigate their functions. CD93 recombinant proteins including five epidermal growth factor (EGF)-like domains (CD93D2), five EGF-like domains with a mucin-like domain (CD93D23) were expressed by Pichia pastoris expression system to investigate its functions; another CD93D23 and whole extracellular region (CD93D123) were expressed with human embryonic kidney cell (HEK-293)-based mammalian expression system. CD93D2, CD93D23, and CD93D123 had stimulatory effects on proliferation and migration of human umbilical vein endothelial cells (HUVECs). LY294002 (PI3K inhibitor) and U0126 (MEK ihibitor) inhibited CD93D23-induced HUVECs migration. We found that CD93D23 exhibited chemotactic activity on HUVECs through phosphorylation of focal adhesion kinase (FAK), extracellular signal-regulated kinase 1/2 (ERK), and phosphatidylinositol-3 kinase/ Akt/ endothelial nitric oxide synthase (eNOS). HUVECs incubated with CD93D23 up-regulated MMP2 and MMP9 production. In murine angiogenesis assay, CD93D23 stimulated angiogenesis in vivo. These results showed that recombinant CD93 could enhance HUVECs proliferation, migration, MMP production, and induce angiogenesis in vivo, implicating that soluble CD93 might be a pro-angiogenic factor.

    中文摘要 1 Abstract 2 Acknowledgements 3 Abbreviation 8 Reagent 9 Instruments 13 Introduction 15 Specific aim 20 Material and Method Ⅰ. Construction of protein expression vectors encoding CD93 21 Subcloning of CD93 into pPICZ�A 21 Subcloning of CD93 into pCR3 23 Ⅱ. E. coli transformation 25 Ⅲ. Cell culture 25 HUVECs subculturing 26 HEK293 subculturing 27 Cryopreservation of culture cells 27 Retrieval of cells from frozen storage 27 Ⅳ. Expression and purification of recombinant CD93 27 P. pastoris expression system 27 Preparation of yeast competent cells 29 Yeast transformation 29 Expression of recombinant CD93 with P.pastoris 30 Purification of recombinant CD93 (from P. pastoris) 30 HEK293 based-mammalian protein expression system 31 HEK293 transfection and selection 31 Expression of recombinant CD93 with HEK293 32 Purification of mammalian cells expressed-recombinant CD93 33 Anion exchanger chromatography (Q Sepharose) 33 Affinity Ni2+-chelating sepharose chromatography (Nickel-chelating Sepharose) 34 Ⅴ. Preparation of polyclonal mouse anti CD93 antibody 34 Production of polyclonal antisera 34 Enzyme-linked Immunosorbent assays (ELISA) 35 Purification of Immunoglobulin G fraction from antiserum 36 Ⅵ. Cell proliferation assay 37 Ⅶ. Cell migration assay 37 Ⅷ. SDS-PAGE and Western blotting 39 Ⅸ. Analysis of signal transduction in HUVECs 41 Cell lysates preparation 41 Protein quantitation 41 HUVECs treatment 42 Ⅹ. Immunofluorescent staining 42 ⅩI. Zymography 43 ⅩII. Murine angiogenesis assay 44 Result 45 Discussion 51 Reference 59 Figure legend 64 Appendix 80 Resume 84

    Arribas, J. and Borroto, A. (2002) Protein ectodomain shedding. Chem Rev 102(12), 4627-38.
    Bergers, G., Brekken, R., McMahon, G., Vu, T.H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z. and Hanahan, D. (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10), 737-44.
    Bogoyevitch, M.A. (2000) Signalling via stress-activated mitogen-activated protein kinases in the cardiovascular system. Cardiovasc Res 45(4), 826-42.
    Christian, S., Ahorn, H., Koehler, A., Eisenhaber, F., Rodi, H.P., Garin-Chesa, P., Park, J.E., Rettig, W.J. and Lenter, M.C. (2001) Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. J Biol Chem 276(10), 7408-14.
    Danet, G.H., Luongo, J.L., Butler, G., Lu, M.M., Tenner, A.J., Simon, M.C. and Bonnet, D.A. (2002) C1qRp defines a new human stem cell population with hematopoietic and hepatic potential. Proc Natl Acad Sci U S A 99(16), 10441-5.
    Davis, R.J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2), 239-52.
    Dean, Y.D., McGreal, E.P., Akatsu, H. and Gasque, P. (2000) Molecular and cellular properties of the rat AA4 antigen, a C-type lectin-like receptor with structural homology to thrombomodulin. J Biol Chem 275(44), 34382-92.
    Dimmeler, S., Dernbach, E. and Zeiher, A.M. (2000) Phosphorylation of the endothelial nitric oxide synthase at ser-1177 is required for VEGF-induced endothelial cell migration. FEBS Lett 477(3), 258-62.
    Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R. and Zeiher, A.M. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399(6736), 601-5.
    Dong, J., Opresko, L.K., Dempsey, P.J., Lauffenburger, D.A., Coffey, R.J. and Wiley, H.S. (1999) Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 96(11), 6235-40.
    Drickamer, K. (1999) C-type lectin-like domains. Curr Opin Struct Biol 9(5), 585-90.
    Eliceiri, B.P., Klemke, R., Stromblad, S. and Cheresh, D.A. (1998) Integrin alphavbeta3 requirement for sustained mitogen-activated protein kinase activity during angiogenesis. J Cell Biol 140(5), 1255-63.
    Fonseca, M.I., Carpenter, P.M., Park, M., Palmarini, G., Nelson, E.L. and Tenner, A.J. (2001) C1qR(P), a myeloid cell receptor in blood, is predominantly expressed on endothelial cells in human tissue. J Leukoc Biol 70(5), 793-800.
    Franke, T.F., Kaplan, D.R., Cantley, L.C. and Toker, A. (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275(5300), 665-8.
    Franke, T.F., Yang, S.I., Chan, T.O., Datta, K., Kazlauskas, A., Morrison, D.K., Kaplan, D.R. and Tsichlis, P.N. (1995) The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81(5), 727-36.
    Frisch, S.M. and Ruoslahti, E. (1997) Integrins and anoikis. Curr Opin Cell Biol 9(5), 701-6.
    Guan, E., Robinson, S.L., Goodman, E.B. and Tenner, A.J. (1994) Cell-surface protein identified on phagocytic cells modulates the C1q-mediated enhancement of phagocytosis. J Immunol 152(8), 4005-16.
    Guan, E.N., Burgess, W.H., Robinson, S.L., Goodman, E.B., McTigue, K.J. and Tenner, A.J. (1991) Phagocytic cell molecules that bind the collagen-like region of C1q. Involvement in the C1q-mediated enhancement of phagocytosis. J Biol Chem 266(30), 20345-55.
    Hamada, H., Ishii, H., Sakyo, K., Horie, S., Nishiki, K. and Kazama, M. (1995) The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood 86(1), 225-33.
    Hansen, J.E., Lund, O., Engelbrecht, J., Bohr, H., Nielsen, J.O. and Hansen, J.E. (1995) Prediction of O-glycosylation of mammalian proteins: specificity patterns of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase. Biochem J 308 (Pt 3), 801-13.
    Huang, C., Jacobson, K. and Schaller, M.D. (2004) MAP kinases and cell migration. J Cell Sci 117(Pt 20), 4619-28.
    Huttenlocher, A., Sandborg, R.R. and Horwitz, A.F. (1995) Adhesion in cell migration. Curr Opin Cell Biol 7(5), 697-706.
    Janeway CA, Travers P, Walport M, Shlomchik M. Immunobiology 5th ed. New York and London: Garland Publishing, 2001.
    Johnson, G.L. and Lapadat, R. (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298(5600), 1911-2.
    Kennedy, S.G., Wagner, A.J., Conzen, S.D., Jordan, J., Bellacosa, A., Tsichlis, P.N. and Hay, N. (1997) The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev 11(6), 701-13.
    Kim, T.S., Park, M., Nepomuceno, R.R., Palmarini, G., Winokur, S., Cotman, C.A., Bengtsson, U. and Tenner, A.J. (2000) Characterization of the murine homolog of C1qR(P): identical cellular expression pattern, chromosomal location and functional activity of the human and murine C1qR(P). Mol Immunol 37(7), 377-89.
    Klemke, R.L., Cai, S., Giannini, A.L., Gallagher, P.J., de Lanerolle, P. and Cheresh, D.A. (1997) Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137(2), 481-92.
    Kundra, V., Escobedo, J.A., Kazlauskas, A., Kim, H.K., Rhee, S.G., Williams, L.T. and Zetter, B.R. (1994) Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature 367(6462), 474-6.
    Lauffenburger, D.A. and Horwitz, A.F. (1996) Cell migration: a physically integrated molecular process. Cell 84(3), 359-69.
    Li, A., Dubey, S., Varney, M.L., Dave, B.J. and Singh, R.K. (2003a) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6), 3369-76.
    Li, J., Zhang, Y.P. and Kirsner, R.S. (2003b) Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc Res Tech 60(1), 107-14.
    Ma, H., Calderon, T.M., Kessel, T., Ashton, A.W. and Berman, J.W. (2003) Mechanisms of hepatocyte growth factor-mediated vascular smooth muscle cell migration. Circ Res 93(11), 1066-73.
    Marshall, C.J. (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80(2), 179-85.
    McGreal, E.P., Ikewaki, N., Akatsu, H., Morgan, B.P. and Gasque, P. (2002) Human C1qRp is identical with CD93 and the mNI-11 antigen but does not bind C1q. J Immunol 168(10), 5222-32.
    Minshall, C., Arkins, S., Freund, G.G. and Kelley, K.W. (1996) Requirement for phosphatidylinositol 3'-kinase to protect hemopoietic progenitors against apoptosis depends upon the extracellular survival factor. J Immunol 156(3), 939-47.
    Morales-Ruiz, M., Fulton, D., Sowa, G., Languino, L.R., Fujio, Y., Walsh, K. and Sessa, W.C. (2000) Vascular endothelial growth factor-stimulated actin reorganization and migration of endothelial cells is regulated via the serine/threonine kinase Akt. Circ Res 86(8), 892-6.
    Munoz-Chapuli, R., Quesada, A.R. and Angel Medina, M. (2004) Angiogenesis and signal transduction in endothelial cells. Cell Mol Life Sci 61(17), 2224-43.
    Murohara, T., Asahara, T., Silver, M., Bauters, C., Masuda, H., Kalka, C., Kearney, M., Chen, D., Symes, J.F., Fishman, M.C., Huang, P.L. and Isner, J.M. (1998a) Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J Clin Invest 101(11), 2567-78.
    Murohara, T., Horowitz, J.R., Silver, M., Tsurumi, Y., Chen, D., Sullivan, A. and Isner, J.M. (1998b) Vascular endothelial growth factor/vascular permeability factor enhances vascular permeability via nitric oxide and prostacyclin. Circulation 97(1), 99-107.
    Murohara, T., Witzenbichler, B., Spyridopoulos, I., Asahara, T., Ding, B., Sullivan, A., Losordo, D.W. and Isner, J.M. (1999) Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 19(5), 1156-61.
    Murphy, G. and Crabbe, T. (1995) Gelatinases A and B. Methods Enzymol 248, 470-84.
    Nepomuceno, R.R. and Tenner, A.J. (1998) C1qRP, the C1q receptor that enhances phagocytosis, is detected specifically in human cells of myeloid lineage, endothelial cells, and platelets. J Immunol 160(4), 1929-35.
    Nobes, C.D. and Hall, A. (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81(1), 53-62.
    Norsworthy, P.J., Fossati-Jimack, L., Cortes-Hernandez, J., Taylor, P.R., Bygrave, A.E., Thompson, R.D., Nourshargh, S., Walport, M.J. and Botto, M. (2004) Murine CD93 (C1qRp) contributes to the removal of apoptotic cells in vivo but is not required for C1q-mediated enhancement of phagocytosis. J Immunol 172(6), 3406-14.
    Petrenko, O., Beavis, A., Klaine, M., Kittappa, R., Godin, I. and Lemischka, I.R. (1999) The molecular characterization of the fetal stem cell marker AA4. Immunity 10(6), 691-700.
    Romer, L.H., McLean, N., Turner, C.E. and Burridge, K. (1994) Tyrosine kinase activity, cytoskeletal organization, and motility in human vascular endothelial cells. Mol Biol Cell 5(3), 349-61.
    Rousseau, S., Houle, F., Landry, J. and Huot, J. (1997) p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15(18), 2169-77.
    Shi, C.S., Shi, G.Y., Chang, Y.S., Han, H.S., Kuo, C.H., Liu, C., Huang, H.C., Chang, Y.J., Chen, P.S. and Wu, H.L. (2005) Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation 111(13), 1627-36.
    Skelton, T.P., Zeng, C., Nocks, A. and Stamenkovic, I. (1998) Glycosylation provides both stimulatory and inhibitory effects on cell surface and soluble CD44 binding to hyaluronan. J Cell Biol 140(2), 431-46.
    Songyang, Z., Baltimore, D., Cantley, L.C., Kaplan, D.R. and Franke, T.F. (1997) Interleukin 3-dependent survival by the Akt protein kinase. Proc Natl Acad Sci U S A 94(21), 11345-50.
    Stamenkovic, I. (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200(4), 448-64.
    Tenner, A.J. (1998) C1q receptors: regulating specific functions of phagocytic cells. Immunobiology 199(2), 250-64.
    Tenner, A.J., Robinson, S.L. and Ezekowitz, R.A. (1995) Mannose binding protein (MBP) enhances mononuclear phagocyte function via a receptor that contains the 126,000 M(r) component of the C1q receptor, 485-93 pp. Immunity, 3.
    Webster, S.D., Park, M., Fonseca, M.I. and Tenner, A.J. (2000) Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis. J Leukoc Biol 67(1), 109-16.
    Weinstat-Saslow, D. and Steeg, P.S. (1994) Angiogenesis and colonization in the tumor metastatic process: basic and applied advances. Faseb J 8(6), 401-7.
    Wennstrom, S., Hawkins, P., Cooke, F., Hara, K., Yonezawa, K., Kasuga, M., Jackson, T., Claesson-Welsh, L. and Stephens, L. (1994) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4(5), 385-93.

    無法下載圖示 校內:2106-07-24公開
    校外:2106-07-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE