簡易檢索 / 詳目顯示

研究生: 歐育綸
Ou, Yu-Lun
論文名稱: 具PD-BII之10位元100MS/s導管式類比數位轉換器
A 10-bit 100MS/s Pipelined A/D Converter with PD-BII
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 72
中文關鍵詞: 導管式類比數位轉換器
外文關鍵詞: pipelined A/D converter
相關次數: 點閱:108下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用TSMC 0.18微米一層多晶矽六層金屬之互補式金氧半製程來實現一個十位元解析度、每秒取樣一百百萬次的低功率導管式類比數位轉換器。具有擬差動偏壓及輸入互換架構的運算放大器被用來取代運算放大器共享方式達到低功率消耗。擬差動運算放大器藉由輸入與偏壓互換的機制使其運作方式等效兩顆運算放大器,因此在每周期運算放大器的加成點可被重置。此外移除前端取樣保持電路與每級電容縮減最佳化更進一步節省功率與面積。根據post-layout的模擬結果,該類比數位轉換器操作在100MHz之取樣頻率,給予42.1875MHz的輸入訊號時,最大雜訊及諧波失真比為58.2dB、無雜散動態範圍為61.0dB。整體電路有效面積0.5mm2、在供應電壓1.8伏下功率消耗24.75mW。

    A low power 10-bit 100-MHz pipelined ADC was implemented in a TSMC 0.18-μm 1P6M CMOS process in this thesis. Opamps with pseudo differential bias and input interchanging (PD-BII) architecture are used as alternatives to opamp-sharing scheme for low power consumption. Since PD-BII opamp with bias and input interchange performs as two opamps, the opamp summing nodes can be reset in every clock cycle. Further power and area savings can be achieved by removing the front-end sample-and-hold and capacitor scaling optimization. According to post-layout simulation, this ADC achieves 58.2-dB peak signal-to-noise plus distortion ratio (SNDR) and 61.0-dB spurious free dynamic range at a 42.1875MHz input with 100MS/s. The ADC occupies an active die area of 0.5mm2 and dissipates 24.75mW on a 1.8V supply.

    1. Introduction 1 1.1 Motivation 1 1.2 Organization 2 2 Review of Analog-to-Digital Converter 4 2.1 Fundamentals of Analog-to-Digital Converter 4 2.2 ADC Performance Metrics 5 2.2.1 Signal-to-Noise Ratio (SNR) 5 2.2.2 Total Harmonic Distortion(THD) 8 2.2.3 Signal-to-Noise and Distortion Ratio (SNDR) 8 2.2.4 Spurious Free Dynamic Range (SFDR) 8 2.2.5 Effective Number of Bits (ENOB) 9 2.2.6 Nonlinearity 9 2.3 Review of ADC Architectures 11 2.3.1 Flash ADC 11 2.3.2 Two-Step ADC 12 2.3.3 Pipelined ADC 12 2.3.4 Cyclic ADC 13 2.4 Key Building Blocks of Pipelined ADC 14 2.4.1 Front-End Sample-and-Hold Circuit 14 2.4.2 Multiplying Digital to Analog Converter 17 2.4.3 Sub-ADC 18 2.4.4 Digital Error Correction 18 2.5 Summary 20 3 System Analysis and Design of Pipelined ADC 21 3.1 Effects of Nonidealities 21 3.1.1 Gain Errors 22 3.1.2 DAC Errors 25 3.1.3 Nonlinearity 26 3.1.4 Opamp Incomplete Settling Time 28 3.1.5 Thermal Noise 28 3.2 Accuracy Requirements 30 3.2.1 Opamp DC Gain Requirement 30 3.2.2 Opamp Bandwidth Requirement 32 3.3 Opamp Sharing Technique 35 3.4 Capacitor Scaling Analysis and Optimization 38 4 Circuit Implementation 41 4.1 Architecture Description 41 4.2 Removing Front-End Sample-and-Hold Circuit 42 4.3 Multiplying Digital to Analog Converter 44 4.3.1 Gain-Boosted Cascode Amplifier 45 4.3.2 Switch Design 48 4.4 Comparator 51 4.5 Sub-ADC and Control Logic 53 4.6 Digital Error Correction 55 4.7 Non-overlapping Clock Generator 56 4.8 Layout and Floor Plan 58 4.9 Simulation Results of Pipelined ADC 60 4.10 Summary 62 5 Measurement Environment Setup 63 5.1 Test Setup 63 5.2 Power Supply and Ground 64 5.3 Reference Voltage Generator 65 6 Conclusion and Future Work 68 Reference 69

    [1] C.-H. Cho, “A Power Optimized Pipelined Analog-to-Digital Converter Design in Deep Sub-Micron CMOS Technology,” Ph.D. dissertation, Georgia Tech, 2005.
    [2] T. Cho and P. Gray, “A 10 b, 20 MSample/s, 35 mW Pipeline A/D Converter,” IEEE J. Solid-State Circuits, vol. 30, pp. 166–172, Mar. 1995.
    [3] K. Nagaraj, H. S. Fetterman, J. Anidjar, S. H. Lewis, and R. G. Renninger, “A 250-mW, 8-b, 52-Msamples/s parallel-pipelined A/D converter with reduced number of amplifiers,” IEEE J. Solid-state Circuits, vol. 32, no. 3, pp. 312-320, Mar. 1997.
    [4] P. C. Yu and H. S. Lee, “A 2.5-V, 12-b, 5-Msample/S Pipelined CMOS ADC,”IEEE J. Solid-State Circuits, vol. 31, no. 12, pp. 1854-1861, Dec. 1996.
    [5] B.-M. Min, P. Kim, F. W. Bowman, D. M. Boisvert, and A. J. Aude, “A 69-mW 10-bit 80-Msample/s pipelined COMS ADC,“ IEEE J. Solid-State Circuits, vol. 38, pp. 2031-2039, Dec. 2003.
    [6] Y. Chiu, P. R. Gray, B. Nikolic, “A 14-b 12-MS/s CMOS Pipeline ADC With Over 100-dB SFDR,“ IEEE J. Solid-State Circuits, vol. 39, pp. 2139-2151, Dec. 2004.
    [7] J. Crols, M. Steyaert, and W. Sansen, “Switched opamp: An approach to realize full CMOS SC circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, pp. 936–942, Aug. 1994.
    [8] M. Waltari and K. A. I. Halonen, “1-V 9-Bit Pipelined Switched-Opamp ADC,” IEEE J. of Solid-State Circuits, vol. 36, no. 1, pp. 129-134, Jan. 2001.
    [9] D. Y. Chang and U. K. Moon, “A 1.4-V 10-bit 25-MS/s pipelined ADC using opamp-reset switching technique,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1401-1404, Aug. 2003.
    [10] J. Arias, V. Boccuzzi, L. Quintanilla, L. Enríquez, D. Bisbal, M. Banu, and J. Barbolla, “Low-Power Pipeline ADC for Wireless LANs,“ IEEE J. of Solid-State Circuits, vol. 39, no. 8, pp.1338-1340, Aug. 2004
    [11] H.-C. Kim, D.-K. Jeng, and W. Kim, “A 30mW 8b 200MS/s pipelined CMOS ADC using a switched-opamp technique,” in ISSCC Dig. Tech. Papers, pp. 284-285, Feb. 2005.
    [12] H.-C. Choi, J.-H. Kim, S.-M. Yoo, K.-J. Lee, T.-H. Oh, M.-J. Seo, J.-W. Kim, “A 15mW 0.2mm2 10b 50MS/s ADC with wide input range,” in ISSCC Dig. Tech. Papers, pp. 226-227, Jan. 2006.
    [13] P. Y. Wu, V. S. L. Cheung, and H. Luong, “A 1-V 100MS/s 8-bit CMOS switched-opamp pipelined ADC using loading-free architecture,” IEEE J. Solid-State Circuits, vol. 42, no. 4, pp. 730-738, Apr. 2007.
    [14] S.-T. Ryu, B.-S. Song” A 10-bit 50MS/s Pipelined ADC With Opamp Current Reuse” IEEE J. Solid Stage Circuits, vol. 42, no. 3, Mar. 2007.
    [15] C.-H. Kuo, T.-H. Kuo, and K.-L. Wen, “Bias-and-input interchanging technique for cyclic/pipelined ADCs with opamp sharing,” accepted by IEEE Trans. Circuits Syst. II.
    [16] I. Mehr, and L. Singer, “A 55-mW, 10-bit, 40-Msample/s Nyquist-rate CMOS ADC,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 318-325, Mar. 2000.
    [17] D. Y. Chang, “Design techniques of a pipelined ADC without using a front-end sample-and-hold amplifier,” in Proc. IEEE Int. Symp. Circuits and Syst., pp. 2123-2132, Nov. 2004.
    [18] Y. D. Jeon, S. C. Lee, K. D. Kim, J. K. Kwon, and J. Kim, “A 4.7 mW 0.32 mm2 10b 30MS/s pipelined ADC without a front-end S/H in 90nm CMOS,” in ISSCC Dig. Tech. Papers, pp. 456-615, Feb. 2007.
    [19] I. Ahmed and D. A. Johns, “A high bandwidth power scalable sub-sampling 10-bit pipeline ADC with embedded sample and hold,” IEEE J. Solid-State Circuit, vol. 43, no. 7, pp. 1638-1647, Jul. 2008.
    [20] B.-G. Lee, B.-M. Min, G. Manganaro, J. W. Valvano, “A 14-b 100-MS/s pipeline. ADC with a merged SHA and first MDAC,” IEEE J. Solid-State Circuits, vol. 43, no. 12, Dec. 2008.
    [21] S. Lewis, “Optimizing the stage resolution in pipelined, multistage, analog-to-digital converters for video applications,” IEEE Trans. Circuits Syst. II, vol. 39, pp. 516-523, Aug. 1992.
    [22] D. W. Cline, P. R. Gray, “A Power Optimized 13-b 5 Msamples/s Pipelined Analog- to-Digital Converter in 1.2 µm CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 294–303, Mar. 1996.
    [23] P. T. F. Kwok, and H. C. Luong, “Power optimization for pipeline analog-to-digital converters,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 46, no. 5, pp.549-553, May. 1999.
    [24] B. Razavi, “Principles of Data Conversion System Design,” NJ: IEEE Press, 1995.
    [25] W.T Colleran, “A 10-bit 100MS/s A/D converter using Folding, Interpolating, and Analog Encoding,” Ph.D dissertation, UCLA, Dec. 1993.
    [26] R.M Gray, “Quantization Noise Spectra,” IEEE Trans. Inform. Theory, vol. 36, pp. 1220-1244, Nov. 1990.
    [27] W. Yang, D. Kelly, I. Mehr, M. T. Sayuk, and L. Singer, "A 3-V 340-mW 14-b 75-Msample/s CMOS ADC With 85-dB SFDR at Nyquist Input," IEEE J. Solid-State Circuits, vol. 36, pp. 1931-1936, Dec. 2001.
    [28] S.H. Lewis, “Video-rate analog-to-digital conversion using pipelined architectures,” Ph.D. dissertation, U.C. Berkeley, 1987.
    [29] Y. M. Lin, “Performance Limitations on High Resolution Video Rate Analog Digital Interfaces,” Ph.D. dissertation, U.C. Berkeley, 1990.
    [30] C. T. Byunghak, “Low-Power Low-Voltage Analog-to-Digital Conversion Techniques Using Pipelined Architectures,” Ph.D. dissertation, U.C. Berkeley, 1995.
    [31] Conroy Cormac Seamus Ger, “A High-Speed parallel Pipelined A/D Converter Technique in CMOS,” Ph.D. dissertation, U.C. Berkeley, 1994.
    [32] M. Daito, H. Matsui, M. Ueda and K. Iizuka, “A 14-bit 20-Ms/s Pipelined ADC With Digital Distortion Calibration,” IEEE J. Solid-State Circuits, vol. 41, pp. 2417-2423, Nov. 2006.
    [33] W. Sansen, “Distortion in elementary transistor circuits,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process, vol. 46, pp. 315-325, Mar. 1999.
    [34] Y. M. Lin, B. Kim, and P. R. Gray, “A 13-b 2.5-MHz self-calibrated pipelined A/D converter in 3u CMOS,” IEEE J. Solid-State Circuits, vol. 26, pp. 628-636, Apr. 1991.
    [35] A. N. Karanicolas and H. S. Lee, “A 15-b 1-Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol. 28, pp. 1207-1215, Dec. 1993.
    [36] H. C. Liu, Z. M. Lee, and J. T. Wu, “A 15-b 40-MS/s CMOS Pipelined Analog to Digital Converter with digital background calibration,“ IEEE J. Solid-State Circuits, vol. 40, pp. 1047-1056, Feb. 2004.
    [37] R. Schreier, J. Silva, J. Steensgaard, and G. C. Temes, “Design-Oriented Estimation of Thermal Noise in Switched-Capacitor Circuits,” IEEE Trans. Circuits Syst. I, vol. 52, pp. 2358-2367, Nov. 2005.
    [38] A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog to Digital Converter,“ IEEE J. Solid-State Circuits, vol. 34, pp. 599-606, May 1999.
    [39] D. Cline, “Noise, speed, and power tradeoffs in pipelined analog to digital converters,” U.C. Berkeley Ph.D. Thesis, Nov. 1995.
    [40] T. C. Choi and R. W. Brodersen, “Considerations for high-frequency switched-capacitor ladder filters,” IEEE Trans. Circuits Systs. CAS-27, pp. 545-552, 1980.
    [41] D. Miyazaki, S. Kawahito, and M. Furuta, “A 10-b 30-MS/s low-power pipelined CMOS A/D converter using a pseudodifferential architecture,” IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 369-373, Feb. 2003.
    [42] J. Li and U. Moon, “A 1.8-V 67-mW 10-bit 100-MS/s pipelined ADC using time-shifted CDS technique,” IEEE J. of Solid-State Circuits, vol. 39, pp. 1468-1476, Mar. 2004.
    [43] S. H. Lewis and P. R. Gray, “A Pipelined 5 Msample/s 9-b analog-to-digital converter,“ IEEE J. Solid-State Circuits, vol. SC-22, pp. 954-961, Dec. 1987.
    [44] A. Shabra and H.-S. Lee, “Oversampled Pipeline A/D Converters With Mismatch Shaping,“ IEEE J. Solid-State Circuits, vol. 37, pp. 566-578, May 2002.
    [45] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched opamp circuits,“ Electronics Letters 7th, Vol. 35, pp. 8-10, Jan. 1999.
    [46] Mohamed Dessouky and Andreas Kaiser, “Very Low-Voltage ΔΣ Digital-Audio Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,“ IEEE J. Solid-State Circuits, vol. 36, pp. 349-355, Mar. 2001.
    [47] L. Singer, S. Ho, M. Timko, and D. Kelly, “A 12-b 65-Msample/s CMOS ADC with 82-dB SFDR at 120 MHz,“ ISSCC Dig. Tech. Paper, pp. 38-39, Feb. 2000.
    [48] H. Pan, M. Segami, M. Choi, J. Cao and A. A. Abidi, “A 3.3-V 12-b 50-MS/s A/D converter in 0.6-um CMOS with over 80-dB SFDR,“ IEEE J. Solid-State Circuits, vol. 35, pp. 1769-1780, Dec. 2000.
    [49] Imran Ahmed, David A. Johns “A 50MS/s to 1kS/s Power Scalable 10-bit Pipelined ADC Using Rapid Power-On Opamps and Minimal Bias Current Variation” IEEE Journal of Solid-Stage Circuits, vol. 40, no 12, pp 2446-2455, Dec. 2005.
    [50] J. B. Park, S. M. Yoo, S. W. Kim, Y. J. Cho, and S. H. Lee, “A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D Converter with 400-MHz Input Bandwidth, ” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp.1335-1337, Aug. 2004.
    [51] National Semiconductor, LM317L 3-Terminal Adjustable Regulator Data Sheet, National Semiconductor, Inc., July 2004.

    下載圖示 校內:2013-02-02公開
    校外:2013-02-02公開
    QR CODE