| 研究生: |
蔡榮哲 Tsai, Jung-Che |
|---|---|
| 論文名稱: |
硫化鈷奈米材料製備及其應用於染敏太陽能電池對電極之研究 Fabrication of cobalt sulfide nanomaterials for counter electrode in DSSCs |
| 指導教授: |
洪敏雄
Hon, Min-Hsiung |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 硫化鈷 、染敏太陽能電池 、介孔 、對電極 、離子交換反應法 |
| 外文關鍵詞: | cobalt sulfide, dye-sensitized solar cell, mesoporous, counter electrode, ion-exchange reaction |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
硫化鈷奈米材料具有表面效應、金屬特性以及多樣形貌與化學配比等特性,廣泛應用在電化學、光電元件,例如二次電池、超級電容和電極材料等。本論文主要目標是以濕式化學法製程,製備價格低廉且高效能的染敏太陽能硫化鈷對電極,用以取代傳統白金對電極的使用,降低染敏太陽能電池之成本及促進工業化量產;藉由參數控制,製作多種新穎結構的硫化鈷奈米材料(涵蓋薄膜、奈米片、介孔薄膜、介孔奈米管結構),並探討其成長機制和電極與碘基電解質之催化特性。
首先以水熱法直接在摻氟氧化錫(FTO)透明導電基材上合成氫氧化鈷奈米片陣列結構,接著利用離子交換反應(IER)製程,將氫氧化鈷材料在低溫、低污染條件下,生成CoS2奈米晶粒散布在非晶質硫化鈷基地,發現其電催化特性與白金材料相當,以其組成太陽能電池量測其光電轉換效率為5.20%。
後續以介孔材料合成技術,將幾丁聚醣螯合鈷金屬離子作為塗佈溶液,在500 ℃高溫熱處理,同時移除幾丁聚醣和氧化鈷離子,可在FTO基材上得到由晶粒尺寸約12 ± 3 nm之Co3O4奈米顆粒所組成的介孔薄膜,配合後續IER製程,製備CoS2介孔薄膜,當IER處理溫度90 ℃,時間4小時,其CoS2電極可獲得最佳的光電轉換效率為5.60%。
為了有效提高對電極比表面積,引入犧牲ZnO奈米棒模板,在FTO基材上製備介孔Co3O4奈米管陣列,單一奈米管長度為1.3 ± 0.1 μm、直徑為90 ± 10 nm;當IER處理溫度90 ℃,時間超過3小時,即可獲得介孔CoS2奈米管陣列電極,應用到染敏太陽能電池對電極,其最佳光電轉換效率為6.13%。
Because of high price of Pt noble metal, it is necessary to investigate new materials to replace the Pt as counter electrodes (CE) of DSSCs for industrial production. In this study, the cobalt sulfide nanomaterials with nanoflake arrays, mesoporous thin films and mesoporous nanotube arrays, respectively, are successfully fabricated on FTO coated glass by difference synthesis technologies including hydrothermal synthesis of Co(OH)2, mesoporous Co3O4 formation from cobalt-chelated chitosan, selective etching of ZnO sacrificial templates and ion-exchange reaction (IER). The mesoporous Co3O4 structures composed of the Co3O4 nanoparticles possess the high surface area and take advantage for further removal of templates and ion-exchange reaction. The mesoporous CoS2 structures are prepared by substitution of S2- for O2- after the IER at 90 ℃ for 4 hours. Morphologies and crystal structures of the CoS2 structures were characterized by SEM, TEM and XRD analyses. Their electrocatalytic properties were determined by electrochemical analyses including cyclic voltammetry (CV) measurement and Tafel polarization. Among all cobalt sulfides, the DSSC assembled with mesoporous CoS2 nanotube array CE achieved a highest power conversion efficiency of 6.13% under AM 1.5 condition, which was comparable to that of 6.04% for the DSSC with Pt CE. It indicates that the mesoporous CoS2 nanotube array can be a low-cost and efficient alternative for the reduction of electrolytes in DSSCs.
1 M. Grätzel, "Powering the planet," Nature 403, 363 (2000).
2 G. Conibeer, "Third-generation photovoltaics," Mater Today 10 (11), 42-50 (2007).
3 H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye Sensitized Zinc-Oxide - Aqueous-Electrolyte - Platinum Photocell," Nature 261 (5559), 402-403 (1976).
4 B. Oregan and M. Grätzel, "A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films," Nature 353 (6346), 737-740 (1991).
5 C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, and M. Gratzel, "Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells," Acs Nano 3 (10), 3103-3109 (2009).
6 E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I-2," Sol Energ Mat Sol C 63 (3), 267-273 (2000).
7 A. Kay M. K. Nazeeruddin, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, "Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes," J. Am. Chem. SOC 115, 9 (1993).
8 R. Katoh, "Quantitative Evaluation of Electron Injection Efficiency in Dye-Sensitized TiO2 Films," Ambio 41, 143-148 (2012).
9 R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide, and L. Y. Han, "Quantitative study of solvent effects on electron injection efficiency for black-dye-sensitized nanocrystalline TiO2 films," Sol Energ Mat Sol C 93 (6-7), 698-703 (2009).
10 A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency (vol 334, pg 629, 2011)," Science 334 (6060), 1203-1203 (2011).
11 J. H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, and M. Gratzel, "Panchromatic engineering for dye-sensitized solar cells," Energ Environ Sci 4 (3), 842-857 (2011).
12 N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero, and G. Sberveglieri, "Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells," Angew Chem Int Edit 50 (51), 12321-12325 (2011).
13 J. H. Lee, N. G. Park, and Y. J. Shin, "Nano-grain SnO2 electrodes for high conversion efficiency SnO2-DSSC," Sol Energ Mat Sol C 95 (1), 179-183 (2011).
14 W. G. Yang, F. R. Wan, Y. L. Wang, and C. H. Jiang, "Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode," Appl Phys Lett 95 (13) (2009).
15 M. Gratzel, "Dye-sensitized solar cells," J Photoch Photobio C 4 (2), 145-153 (2003).
16 J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, and J. Augustynski, "Highly Efficient Sensitization of Titanium-Dioxide," J Am Chem Soc 107 (10), 2988-2990 (1985).
17 Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordin Chem Rev 248 (13-14), 1381-1389 (2004).
18 C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, "Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode," Electrochim Acta 53 (6), 2890-2896 (2008).
19 S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, and C. A. Bignozzi, "Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells," J Am Chem Soc 124 (37), 11215-11222 (2002).
20 A. Kay and M. Gratzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Sol Energ Mat Sol C 44 (1), 99-117 (1996).
21 H. Choi, H. Kim, S. Hwang, Y. Han, and M. Jeon, "Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition," J Mater Chem 21 (21), 7548-7551 (2011).
22 R. B. Levy and M. Boudart, "Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis," Science 181 (4099), 547-549 (1973).
23 M. X. Wu, X. A. Lin, A. Hagfeldt, and T. L. Ma, "Low-Cost Molybdenum Carbide and Tungsten Carbide Counter Electrodes for Dye-Sensitized Solar Cells," Angew Chem Int Edit 50 (15), 3520-3524 (2011).
24 S. N. Yun, M. X. Wu, Y. D. Wang, J. Shi, X. Lin, A. Hagfeldt, and T. L. Ma, "Pt-like Behavior of High-Performance Counter Electrodes Prepared from Binary Tantalum Compounds Showing High Electrocatalytic Activity for Dye-Sensitized Solar Cells," Chemsuschem 6 (3), 411-416 (2013).
25 Q. W. Jiang, G. R. Li, and X. P. Gao, "Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells," Chem Commun (44), 6720-6722 (2009).
26 X. Lin, M. X. Wu, Y. D. Wang, A. Hagfeldt, and T. L. Ma, "Novel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells," Chem Commun 47 (41), 11489-11491 (2011).
27 M. X. Wu, X. Lin, Y. D. Wang, L. Wang, W. Guo, D. D. Qu, X. J. Peng, A. Hagfeldt, M. Gratzel, and T. L. Ma, "Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells," J Am Chem Soc 134 (7), 3419-3428 (2012).
28 C. Coperet, "Catalysis by transition metal sulphides. From molecular theory to industrial applications. H. Toulhoat and P. Raybaud, Editors, Technip Edition, Paris, 2013," J Catal 307, 121-121 (2013).
29 M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, and M. Gratzel, "CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells," J Am Chem Soc 131 (44), 15976–15977 (2009).
30 H. C. Sun, D. Qin, S. Q. Huang, X. Z. Guo, D. M. Li, Y. H. Luo, and Q. B. Meng, "Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique," Energ Environ Sci 4 (8), 2630-2637 (2011).
31 M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, and T. Ma, "Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes," Phys Chem Chem Phys 13 (43), 19298-19301 (2011).
32 C. W. Kung, H. W. Chen, C. Y. Lin, K. C. Huang, R. Vittal, and K. C. Ho, "CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell," Acs Nano 6 (8), 7016-7025 (2012).
33 M. S. Faber, K. Park, M. Caban-Acevedo, P. K. Santra, and S. Jin, "Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells," J Phys Chem Lett 4 (11), 1843-1849 (2013).
34 Z. W. Shi, K. M. Deng, and L. Li, "Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells," Sci Rep-Uk 5 (2015).
35 T. Yohannes and O. Inganas, "Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte," Sol Energ Mat Sol C 51 (2), 193-202 (1998).
36 K. S. Lee, H. K. Lee, D. H. Wang, N. G. Park, J. Y. Lee, O. O. Park, and J. H. Park, "Dye-sensitized solar cells with Pt- and TCO-free counter electrodes," Chem Commun 46 (25), 4505-4507 (2010).
37 P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Y. F. Huang, and Q. G. Li, "High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells," Sol Energy 83 (6), 845-849 (2009).
38 X. L. Duan, Z. Y. Gao, J. L. Chang, D. P. Wu, P. F. Ma, J. J. He, F. Xu, S. Y. Gao, and K. Jiang, "CoS2-graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell," Electrochim Acta 114, 173-179 (2013).
39 X. K. Xin, M. He, W. Han, J. H. Jung, and Z. Q. Lin, "Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells," Angew Chem Int Edit 50 (49), 11739-11742 (2011).
40 X. X. Chen, Q. W. Tang, B. L. He, L. Lin, and L. M. Yu, "Platinum-Free Binary Co-Ni Alloy Counter Electrodes for Efficient Dye-Sensitized Solar Cells," Angew Chem Int Edit 53 (40), 10799-10803 (2014).
41 P. J. Masset and R. A. Guidotti, "Thermal activated ("thermal") battery technology. Part IIIb. Sulfur and oxide-based cathode materials," J Power Sources 178 (1), 456-466 (2008).
42 D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, and Z. Chen, "Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte," J Mater Chem A 3 (12), 6340-6350 (2015).
43 Q. H. Wang, L. F. Jiao, Y. Han, H. M. Du, W. X. Peng, Q. N. Huan, D. W. Song, Y. C. Si, Y. J. Wang, and H. T. Yuan, "CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries," J Phys Chem C 115 (16), 8300-8304 (2011).
44 R. C. Jin, L. X. Yang, G. H. Li, and G. Chen, "Hierarchical worm-like CoS2composed of ultrathin nanosheets as an anode material for lithium-ion batteries," J. Mater. Chem. A (2015).
45 H. K. Mulmudi, S. K. Batabyal, M. Rao, R. R. Prabhakar, N. Mathews, Y. M. Lam, and S. G. Mhaisalkar, "Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs)," Phys Chem Chem Phys 13 (43), 19307-19309 (2011).
46 J. Y. Lin and J. H. Liao, "Mesoporous Electrodeposited-CoS Film as a Counter Electrode Catalyst in Dye-Sensitized Solar," J Electrochem Soc 159 (2), D65-D71 (2012).
47 L. Dloczik and R. Konenkamp, "Nanostructure transfer in semiconductors by ion exchange," Nano Lett 3 (5), 651-653 (2003).
48 X. H. Xia, C. R. Zhu, J. S. Luo, Z. Y. Zeng, C. Guan, C. F. Ng, H. Zhang, and H. J. Fan, "Synthesis of Free-Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application," Small 10 (4), 766-773 (2014).
49 H. W. Chen, C. W. Kung, C. M. Tseng, T. C. Wei, N. Sakai, S. Morita, M. Ikegami, T. Miyasaka, and K. C. Ho, "Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode," J Mater Chem A 1 (44), 13759-13768 (2013).
50 Y. Q. Zhang, X. H. Xia, J. Kang, and J. P. Tu, "Hydrothermal synthesized porous Co(OH)(2) nanoflake film for supercapacitor application," Chinese Sci Bull 57 (32), 4215-4219 (2012).
51 Y. L. Hou, H. Kondoh, M. Shimojo, T. Kogure, and T. Ohta, "High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization," J Phys Chem B 109 (41), 19094-19098 (2005).
52 Y. Oaki, S. Kajiyama, T. Nishimura, and T. Kato, "Selective synthesis and thin-film formation of alpha-cobalt hydroxide through an approach inspired by biomineralization," J Mater Chem 18 (35), 4140-4142 (2008).
53 X. H. Xia, J. P. Tu, J. Y. Xiang, X. H. Huang, X. L. Wang, and X. B. Zhao, "Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries," J Power Sources 195 (7), 2014-2022 (2010).
54 R. Z. Ma, Z. P. Liu, K. Takada, K. Fukuda, Y. Ebina, Y. Bando, and T. Sasaki, "Tetrahedral Co(II) coordination in alpha-type cobalt hydroxide: Rietveld refinement and X-ray absorption spectroscopy," Inorg Chem 45 (10), 3964-3969 (2006).
55 H. C. Yang, W. H. Wang, K. S. Huang, and M. H. Hon, "Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties," Carbohyd Polym 79 (1), 176-179 (2010).
56 K. Sakurai, T. Maegawa, and T. Takahashi, "Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends," Polymer 41 (19), 7051-7056 (2000).
57 Z. Y. Fei, S. C. He, L. Li, W. J. Ji, and C. T. Au, "Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion," Chem Commun 48 (6), 853-855 (2012).
58 W. Luo, Y. Xie, C. Z. Wu, and F. Zheng, "Spherical CoS2@ arbon core-shell nanoparticles: one-pot synthesis and Li storage property," Nanotechnology 19 (7) (2008).
59 T. He, D. R. Chen, X. L. Jiao, Y. L. Wang, and Y. Z. Duan, "Solubility-controlled synthesis of high-quality Co3O4 nanocrystals," Chem Mater 17 (15), 4023-4030 (2005).
60 J. H. Guo, Y. T. Shi, Y. T. Chu, and T. L. Ma, "Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells," Chem Commun 49 (86), 10157-10159 (2013).
61 M. X. Wu, X. A. Lin, A. Hagfeldt, and T. L. Ma, "A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells," Chem Commun 47 (15), 4535-4537 (2011).
62 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells," Nano Lett 6 (2), 215-218 (2006).
63 S. S. Rao, C. V. V. M. Gopi, S. K. Kim, M. K. Son, M. S. Jeong, A. D. Savariraj, K. Prabakar, and H. J. Kim, "Cobalt sulfide thin film as an efficient counter electrode for dye-sensitized solar cells," Electrochim Acta 133, 174-179 (2014).
64 G. R. Li, F. Wang, Q. W. Jiang, X. P. Gao, and P. W. Shen, "Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells," Angew Chem Int Edit 49 (21), 3653-3656 (2010).
65 N. L. Yang, Q. Yuan, J. Zhai, T. X. Wei, D. Wang, and L. Jiang, "Enhanced Light Harvesting in Plasmonic Dye-Sensitized Solar Cells by Using a Topologically Ordered Gold Light-Trapping Layer," Chemsuschem 5 (3), 572-576 (2012).
66 X. Chen, Y. Hou, B. Zhang, X. H. Yang, and H. G. Yang, "Low-cost SnSx counter electrodes for dye-sensitized solar cells," Chem Commun 49 (51), 5793-5795 (2013).
校內:2020-08-03公開