簡易檢索 / 詳目顯示

研究生: 蔡榮哲
Tsai, Jung-Che
論文名稱: 硫化鈷奈米材料製備及其應用於染敏太陽能電池對電極之研究
Fabrication of cobalt sulfide nanomaterials for counter electrode in DSSCs
指導教授: 洪敏雄
Hon, Min-Hsiung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 111
中文關鍵詞: 硫化鈷染敏太陽能電池介孔對電極離子交換反應法
外文關鍵詞: cobalt sulfide, dye-sensitized solar cell, mesoporous, counter electrode, ion-exchange reaction
相關次數: 點閱:117下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 硫化鈷奈米材料具有表面效應、金屬特性以及多樣形貌與化學配比等特性,廣泛應用在電化學、光電元件,例如二次電池、超級電容和電極材料等。本論文主要目標是以濕式化學法製程,製備價格低廉且高效能的染敏太陽能硫化鈷對電極,用以取代傳統白金對電極的使用,降低染敏太陽能電池之成本及促進工業化量產;藉由參數控制,製作多種新穎結構的硫化鈷奈米材料(涵蓋薄膜、奈米片、介孔薄膜、介孔奈米管結構),並探討其成長機制和電極與碘基電解質之催化特性。
    首先以水熱法直接在摻氟氧化錫(FTO)透明導電基材上合成氫氧化鈷奈米片陣列結構,接著利用離子交換反應(IER)製程,將氫氧化鈷材料在低溫、低污染條件下,生成CoS2奈米晶粒散布在非晶質硫化鈷基地,發現其電催化特性與白金材料相當,以其組成太陽能電池量測其光電轉換效率為5.20%。
    後續以介孔材料合成技術,將幾丁聚醣螯合鈷金屬離子作為塗佈溶液,在500 ℃高溫熱處理,同時移除幾丁聚醣和氧化鈷離子,可在FTO基材上得到由晶粒尺寸約12 ± 3 nm之Co3O4奈米顆粒所組成的介孔薄膜,配合後續IER製程,製備CoS2介孔薄膜,當IER處理溫度90 ℃,時間4小時,其CoS2電極可獲得最佳的光電轉換效率為5.60%。
    為了有效提高對電極比表面積,引入犧牲ZnO奈米棒模板,在FTO基材上製備介孔Co3O4奈米管陣列,單一奈米管長度為1.3 ± 0.1 μm、直徑為90 ± 10 nm;當IER處理溫度90 ℃,時間超過3小時,即可獲得介孔CoS2奈米管陣列電極,應用到染敏太陽能電池對電極,其最佳光電轉換效率為6.13%。

    Because of high price of Pt noble metal, it is necessary to investigate new materials to replace the Pt as counter electrodes (CE) of DSSCs for industrial production. In this study, the cobalt sulfide nanomaterials with nanoflake arrays, mesoporous thin films and mesoporous nanotube arrays, respectively, are successfully fabricated on FTO coated glass by difference synthesis technologies including hydrothermal synthesis of Co(OH)2, mesoporous Co3O4 formation from cobalt-chelated chitosan, selective etching of ZnO sacrificial templates and ion-exchange reaction (IER). The mesoporous Co3O4 structures composed of the Co3O4 nanoparticles possess the high surface area and take advantage for further removal of templates and ion-exchange reaction. The mesoporous CoS2 structures are prepared by substitution of S2- for O2- after the IER at 90 ℃ for 4 hours. Morphologies and crystal structures of the CoS2 structures were characterized by SEM, TEM and XRD analyses. Their electrocatalytic properties were determined by electrochemical analyses including cyclic voltammetry (CV) measurement and Tafel polarization. Among all cobalt sulfides, the DSSC assembled with mesoporous CoS2 nanotube array CE achieved a highest power conversion efficiency of 6.13% under AM 1.5 condition, which was comparable to that of 6.04% for the DSSC with Pt CE. It indicates that the mesoporous CoS2 nanotube array can be a low-cost and efficient alternative for the reduction of electrolytes in DSSCs.

    總目錄 摘要 I Extended Abstract II 致謝 VII 總目錄 VIII 圖目錄 X 表目錄 XIV 中英文名詞與符號對照表 XV 第一章 緒論 1 1-1 引言 1 1-2 研究動機與目的 2 第二章 文獻回顧與理論基礎 4 2-1 染敏太陽能電池(dye-sensitized solar cells, DSSCs) 4 2-1-1 染敏太陽能電池之沿革 4 2-1-2染敏太陽能電池之組成結構 4 2-1-3 染敏太陽能電池之工作原理 8 2-2 染敏太陽能電池對電極之研究發展 14 2-2-1 貴重金屬對電極 14 2-2-2 碳對電極 14 2-2-3 過渡金屬碳化物、氧化物、氮化物對電極 15 2-2-4 過渡金屬硫化物對電極 17 2-2-5 導電高分子對電極 19 2-2-6 複合材料對電極 19 2-2-7 其他材料對電極 19 2-3硫化鈷性質與製程技術 20 2-3-1 溶熱或水熱法 22 2-3-2 高溫硫化法 25 2-3-3 電化學沉積法 27 2-3-4 離子交換反應法 29 第三章 實驗步驟與方法 32 3-1 實驗藥品與材料 33 3-2水熱法設備 35 3-3 合成硫化鈷奈米片陣列結構 37 3-4 合成介孔硫化鈷薄膜 37 3-5 合成介孔硫化鈷奈米管陣列結構 37 3-6 TiO2光電極製備與電解質配製 38 3-7 材料分析與元件特性分析 40 3-7-1 X光繞射分析(XRD) 40 3-7-2 掃描式電子顯微鏡分析(SEM)與穿透式電子顯微鏡分析(TEM) 40 3-7-3熱重與熱差分析(TGA/DTA) 40 3-7-4紫外光、可見光及近紅外光光譜 (UV/Vis/NIR spectra) 41 3-7-5電化學特性分析 41 3-7-6染敏太陽能電池特性分析 42 第四章 結果與討論 43 4-1硫化鈷奈米片陣列 43 4-1-1硫化鈷奈米片陣列合成 43 4-1-2硫化鈷奈米片陣列對電極應用 53 4-2 介孔硫化鈷薄膜 57 4-2-1介孔硫化鈷薄膜合成 57 4-2-2介孔硫化鈷薄膜對電極應用 69 4-3介孔硫化鈷奈米管陣列 77 4-3-1介孔硫化鈷奈米管陣列合成 77 4-3-2介孔硫化鈷奈米管陣列對電極應用 88 第五章 結論 98 第六章 參考文獻 100 圖目錄 Fig. 2-1 Schematic representation of the dye-sensitized solar cell. 6 Fig. 2-2 UV–Vis absorption spectrum of N719 in 1:1 acetonitrile and tert-butanol. The inset shows the molecular structure of N719. 8 Fig. 2-3 Principle of operation and energy level scheme of the dye-sensitized nanocrystalline solar cell. 11 Fig. 2-4 Photovoltaic conversion efficiency of the solar cell under the illumination. 13 Fig. 2-5 The PCE distribution of carbides, nitrides and oxides as the CEs in DSSCs. 16 Fig. 2-6 SEM images of the films of (a) Co3O4 ANRAs, (b) CoS ANRAs-3h, (c) CoS ANRAs-12h, (d) CoS ANRAs-24h, (e) CoS ANRAs-36h, (f) CoS ANRAs-24h, at high magnification, (g) Co3O4 ANRAs at cross section, and (h) CoS ANRAs-24h at cross section. The insets of (a–e) show the large-scale SEM images of the corresponding ANRAs, and the inset of (g) shows a single nanorod of the Co3O4 ANRAs. 18 Fig. 2-7 Co-S phase diagram. 21 Fig. 2-8 TEM images of (a) CoS2-G, (b) CoS2-C and (c) CoS2-CG. (d) High resolution TEM image of a single crystal CoS2 octahedron particle along with (inset) SAED pattern. 23 Fig. 2-9 (a) XRD pattern and (b–d) FESEM images of the obtained products. 24 Fig. 2-10 Schematic depictions of (a) the preparation of a cobalt pyrite (CoS2) film electrode via the thermal sulfidation of a 100 nm thick cobalt film deposited over a titanium adhesion layer on a roughened borosilicate glass substrate by electron-beam evaporation and (b) the incorporation of an as-synthesized CoS2 film on glass into a CdS/CdSe-sensitized thin-layer liquid-junction quantum dot-sensitized solar cell (QDSSC) filled with sulfide/polysulfide electrolyte to demonstrate the high QDSSC performance enabled by the CoS2 CE. 26 Fig. 2-11 Top-view FESEM images of deposits prepared in the base solutions containing various TU concentrations. 28 Fig. 2-12 Schematic of the conversion of metal oxide nanoarrays to metal sulfides nanoarrays via anion exchange reactions. 31 Fig. 3-1 The flow chart of experiment for cobalt sulfide nanomaterials and their fabrication of the DSSCs. 32 Fig. 3-2 The optical images of the autoclave containing the stainless parts and Teflon parts. 36 Fig. 3-3 The SEM image of the TiO2 photoanode on FTO coated glass. 39 Fig. 4-1 SEM images of Co(OH)2 nanoflake arrays on FTO substrate via a hydrothermal synthesis at 120 ℃ for (a)0, (b)0.5, (c)1, and (d) 5 h. 45 Fig. 4-2 (a) and (b) SEM images of Co(OH)2 nanoflake arrays on FTO substrate. (c) TEM image and (d) High resolution TEM image of a scraped Co(OH)2 nanoflake (NBDP in sect). 47 Fig. 4-3 XRD patterns of (a) FTO substrate, (b) as-prepared Co(OH)2 nanoflake array film and (c) Co(OH)2 nanoflake array film after the IER method at 75 ℃ for 8 h. 49 Fig. 4-4 (a) The SEM image and (b) EDS element mapping of CoS2 nanoflake arrays on FTO substrate. (c)-(e) TEM analyses of scrapped CoS2 nanoflakes (NBDP in inset). 51 Fig. 4-5 The EDS analyses of different areas on a cobalt sulfide nanoflake: (a) CoS2 nanocrystal and (b) cobalt sulfide amorphous matrix. 52 Fig. 4-6 (a) Tafel polarization curves of the symmetrical cells based on CoS2 nanoflake arrays and sputtered Pt electrodes. (b) Cyclic voltammograms of I3-/I- for CoS2 nanoflake arrays and sputtered Pt electrodes. 53 Fig. 4-7 Photocurrent density-voltage (J-V) curves of the DSSCs using sputtered Pt and CoS2 nanoflake arrays as the CEs. 56 Fig. 4-8 TGA and DSC curves of cobalt/chitosan at a heating rate of 5℃min-1 from room temperature to 600℃. 58 Fig. 4-9 High resolution SEM top-view and cross-section images of (a) bare FTO coated glass, (b) cobalt/chitosan, (c) cobalt oxide and (d) cobalt sulfide thin films. 60 Fig. 4-10 XRD patterns of Co3O4 mesoporous films on FTO coated glass after the IER method at different temperatures for 4 hours: (a) as-prepared, (b) room temperature, (c) 60 ℃ and (d) 90 ℃. 62 Fig. 4-11 XRD patterns of Co3O4 mesoporous films on glass after the IER method at different temperatures for 4 hours: (a) as-prepared, (b) room temperature, (c) 60 ℃ and (d) 90 ℃. 63 Fig. 4-12 TEM and HRTEM images of (a-b) Co3O4 and (d-e) CoS2 film fragments scrapped from FTO glass, respectively. Selective area electron diffraction (SAED) patterns of (c) Co3O4 and (f) CoS2 fragments. 66 Fig.4-13 UV-visible spectra of the (a) mesopourous Co¬3O4 film on FTO coated glass and (b) oxide films after the IER method at different temperatures for 4 hours. 68 Fig. 4-14 Cyclic voltammograms of the triiodide/iodide redox couple for the prepared oxide films after the IER method at (a) room temperature, (b) 60 ℃, and (c) 90℃. ((d) Pt for comparison.) 70 Fig. 4-15 Tafel polarization cures for the symmetrical cells fabricated with two identical CoS2 and Pt electrodes. 73 Fig. 4-16 Photocurrent density-voltage (J-V) curves of the DSSCs with different CEs. 76 Fig. 4-17 SEM images of (a) ZnO particles and (b)(c)(d) Co3O4 shell structures on FTO coated glass. 78 Fig. 4-18 Schematic illustration for the preparation process of the cobalt sulfide nanotube arrays on FTO coated glass. 80 Fig. 4-19 SEM images of (a) ZnO nanorod arrays, (b) Co3O4/ZnO composites, (c) Co3O4 nanotube arrays and (d) cobalt sulfide nanotube arrays on FTO substrate. 83 Fig. 4-20 XRD patterns of obtained samples on FTO substrate: (a) ZnO nanorod arrays, (b) Co/chitosan on ZnO templates, (c) Co3O4 nanotube arrays and (d) CoS2 nanotube arrays. 85 Fig. 4-21 TEM analyses and element mapping of the CoS2 nanotube (SAED in inset). 87 Fig. 4-22 Cyclic voltammetry curves of the triiodide/iodide redox couple for the prepared cobalt sulfide nanotube arrays after the IER at 90℃ for 1~4 h. (Insect: Pt for comparison) 89 Fig. 4-23 Tafel polarization curves for the symmetrical cells fabricated with two identical CoS2 nanotube arrays and Pt electrodes. 91 Fig. 4-24 The Nyquist plots of the symmetrical cells based on different CEs. 93 Fig. 4-25 Photocurrent density-voltage (J-V) curves of the DSSCs with different CEs. 96 Fig. 4-26 Variations of photovoltaic parameters with aging time for the DSSC with the mesoporous CoS2 nanotube array CE (NT4). 97 表目錄 Tab. 3-1 The chemicals used in this study 33 Tab. 4-1 Photovoltaic parameters of the DSSCs using sputtered Pt and CoS2 nanoflake arrays as the CEs. 56 Tab. 4-2 Photovoltaic performance of DSSCs fabricated with different CEs 76 Tab. 4-3 EIS parameters of the symmetrical cells fabricated with different CEs. 93 Tab. 4-4 Photovoltaic performance of DSSCs fabricated with different CEs. 96

    1 M. Grätzel, "Powering the planet," Nature 403, 363 (2000).
    2 G. Conibeer, "Third-generation photovoltaics," Mater Today 10 (11), 42-50 (2007).
    3 H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, "Dye Sensitized Zinc-Oxide - Aqueous-Electrolyte - Platinum Photocell," Nature 261 (5559), 402-403 (1976).
    4 B. Oregan and M. Grätzel, "A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal Tio2 Films," Nature 353 (6346), 737-740 (1991).
    5 C. Y. Chen, M. K. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin, and M. Gratzel, "Highly Efficient Light-Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells," Acs Nano 3 (10), 3103-3109 (2009).
    6 E. Olsen, G. Hagen, and S. E. Lindquist, "Dissolution of platinum in methoxy propionitrile containing LiI/I-2," Sol Energ Mat Sol C 63 (3), 267-273 (2000).
    7 A. Kay M. K. Nazeeruddin, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, "Conversion of Light to Electricity by cis-XzBis( 2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) Charge-Transfer Sensitizers (X = C1-, Br-, I-, CN-, and SCN-) on Nanocrystalline Ti02 Electrodes," J. Am. Chem. SOC 115, 9 (1993).
    8 R. Katoh, "Quantitative Evaluation of Electron Injection Efficiency in Dye-Sensitized TiO2 Films," Ambio 41, 143-148 (2012).
    9 R. Katoh, M. Kasuya, A. Furube, N. Fuke, N. Koide, and L. Y. Han, "Quantitative study of solvent effects on electron injection efficiency for black-dye-sensitized nanocrystalline TiO2 films," Sol Energ Mat Sol C 93 (6-7), 698-703 (2009).
    10 A. Yella, H. W. Lee, H. N. Tsao, C. Y. Yi, and A. K. Chandiran, "Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency (vol 334, pg 629, 2011)," Science 334 (6060), 1203-1203 (2011).
    11 J. H. Yum, E. Baranoff, S. Wenger, M. K. Nazeeruddin, and M. Gratzel, "Panchromatic engineering for dye-sensitized solar cells," Energ Environ Sci 4 (3), 842-857 (2011).
    12 N. Memarian, I. Concina, A. Braga, S. M. Rozati, A. Vomiero, and G. Sberveglieri, "Hierarchically Assembled ZnO Nanocrystallites for High-Efficiency Dye-Sensitized Solar Cells," Angew Chem Int Edit 50 (51), 12321-12325 (2011).
    13 J. H. Lee, N. G. Park, and Y. J. Shin, "Nano-grain SnO2 electrodes for high conversion efficiency SnO2-DSSC," Sol Energ Mat Sol C 95 (1), 179-183 (2011).
    14 W. G. Yang, F. R. Wan, Y. L. Wang, and C. H. Jiang, "Achievement of 6.03% conversion efficiency of dye-sensitized solar cells with single-crystalline rutile TiO2 nanorod photoanode," Appl Phys Lett 95 (13) (2009).
    15 M. Gratzel, "Dye-sensitized solar cells," J Photoch Photobio C 4 (2), 145-153 (2003).
    16 J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, and J. Augustynski, "Highly Efficient Sensitization of Titanium-Dioxide," J Am Chem Soc 107 (10), 2988-2990 (1985).
    17 Z. S. Wang, H. Kawauchi, T. Kashima, and H. Arakawa, "Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell," Coordin Chem Rev 248 (13-14), 1381-1389 (2004).
    18 C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, "Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode," Electrochim Acta 53 (6), 2890-2896 (2008).
    19 S. A. Sapp, C. M. Elliott, C. Contado, S. Caramori, and C. A. Bignozzi, "Substituted polypyridine complexes of cobalt(II/III) as efficient electron-transfer mediators in dye-sensitized solar cells," J Am Chem Soc 124 (37), 11215-11222 (2002).
    20 A. Kay and M. Gratzel, "Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder," Sol Energ Mat Sol C 44 (1), 99-117 (1996).
    21 H. Choi, H. Kim, S. Hwang, Y. Han, and M. Jeon, "Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition," J Mater Chem 21 (21), 7548-7551 (2011).
    22 R. B. Levy and M. Boudart, "Platinum-Like Behavior of Tungsten Carbide in Surface Catalysis," Science 181 (4099), 547-549 (1973).
    23 M. X. Wu, X. A. Lin, A. Hagfeldt, and T. L. Ma, "Low-Cost Molybdenum Carbide and Tungsten Carbide Counter Electrodes for Dye-Sensitized Solar Cells," Angew Chem Int Edit 50 (15), 3520-3524 (2011).
    24 S. N. Yun, M. X. Wu, Y. D. Wang, J. Shi, X. Lin, A. Hagfeldt, and T. L. Ma, "Pt-like Behavior of High-Performance Counter Electrodes Prepared from Binary Tantalum Compounds Showing High Electrocatalytic Activity for Dye-Sensitized Solar Cells," Chemsuschem 6 (3), 411-416 (2013).
    25 Q. W. Jiang, G. R. Li, and X. P. Gao, "Highly ordered TiN nanotube arrays as counter electrodes for dye-sensitized solar cells," Chem Commun (44), 6720-6722 (2009).
    26 X. Lin, M. X. Wu, Y. D. Wang, A. Hagfeldt, and T. L. Ma, "Novel counter electrode catalysts of niobium oxides supersede Pt for dye-sensitized solar cells," Chem Commun 47 (41), 11489-11491 (2011).
    27 M. X. Wu, X. Lin, Y. D. Wang, L. Wang, W. Guo, D. D. Qu, X. J. Peng, A. Hagfeldt, M. Gratzel, and T. L. Ma, "Economical Pt-Free Catalysts for Counter Electrodes of Dye-Sensitized Solar Cells," J Am Chem Soc 134 (7), 3419-3428 (2012).
    28 C. Coperet, "Catalysis by transition metal sulphides. From molecular theory to industrial applications. H. Toulhoat and P. Raybaud, Editors, Technip Edition, Paris, 2013," J Catal 307, 121-121 (2013).
    29 M. K. Wang, A. M. Anghel, B. Marsan, N. L. C. Ha, N. Pootrakulchote, S. M. Zakeeruddin, and M. Gratzel, "CoS Supersedes Pt as Efficient Electrocatalyst for Triiodide Reduction in Dye-Sensitized Solar Cells," J Am Chem Soc 131 (44), 15976–15977 (2009).
    30 H. C. Sun, D. Qin, S. Q. Huang, X. Z. Guo, D. M. Li, Y. H. Luo, and Q. B. Meng, "Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique," Energ Environ Sci 4 (8), 2630-2637 (2011).
    31 M. Wu, Y. Wang, X. Lin, N. Yu, L. Wang, L. Wang, A. Hagfeldt, and T. Ma, "Economical and effective sulfide catalysts for dye-sensitized solar cells as counter electrodes," Phys Chem Chem Phys 13 (43), 19298-19301 (2011).
    32 C. W. Kung, H. W. Chen, C. Y. Lin, K. C. Huang, R. Vittal, and K. C. Ho, "CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-Sensitized Solar Cell," Acs Nano 6 (8), 7016-7025 (2012).
    33 M. S. Faber, K. Park, M. Caban-Acevedo, P. K. Santra, and S. Jin, "Earth-Abundant Cobalt Pyrite (CoS2) Thin Film on Glass as a Robust, High-Performance Counter Electrode for Quantum Dot-Sensitized Solar Cells," J Phys Chem Lett 4 (11), 1843-1849 (2013).
    34 Z. W. Shi, K. M. Deng, and L. Li, "Pt-free and efficient counter electrode with nanostructured CoNi2S4 for dye-sensitized solar cells," Sci Rep-Uk 5 (2015).
    35 T. Yohannes and O. Inganas, "Photoelectrochemical studies of the junction between poly[3-(4-octylphenyl)thiophene] and a redox polymer electrolyte," Sol Energ Mat Sol C 51 (2), 193-202 (1998).
    36 K. S. Lee, H. K. Lee, D. H. Wang, N. G. Park, J. Y. Lee, O. O. Park, and J. H. Park, "Dye-sensitized solar cells with Pt- and TCO-free counter electrodes," Chem Commun 46 (25), 4505-4507 (2010).
    37 P. J. Li, J. H. Wu, J. M. Lin, M. L. Huang, Y. F. Huang, and Q. G. Li, "High-performance and low platinum loading Pt/Carbon black counter electrode for dye-sensitized solar cells," Sol Energy 83 (6), 845-849 (2009).
    38 X. L. Duan, Z. Y. Gao, J. L. Chang, D. P. Wu, P. F. Ma, J. J. He, F. Xu, S. Y. Gao, and K. Jiang, "CoS2-graphene composite as efficient catalytic counter electrode for dye-sensitized solar cell," Electrochim Acta 114, 173-179 (2013).
    39 X. K. Xin, M. He, W. Han, J. H. Jung, and Z. Q. Lin, "Low-Cost Copper Zinc Tin Sulfide Counter Electrodes for High-Efficiency Dye-Sensitized Solar Cells," Angew Chem Int Edit 50 (49), 11739-11742 (2011).
    40 X. X. Chen, Q. W. Tang, B. L. He, L. Lin, and L. M. Yu, "Platinum-Free Binary Co-Ni Alloy Counter Electrodes for Efficient Dye-Sensitized Solar Cells," Angew Chem Int Edit 53 (40), 10799-10803 (2014).
    41 P. J. Masset and R. A. Guidotti, "Thermal activated ("thermal") battery technology. Part IIIb. Sulfur and oxide-based cathode materials," J Power Sources 178 (1), 456-466 (2008).
    42 D. C. Higgins, F. M. Hassan, M. H. Seo, J. Y. Choi, M. A. Hoque, D. U. Lee, and Z. Chen, "Shape-controlled octahedral cobalt disulfide nanoparticles supported on nitrogen and sulfur-doped graphene/carbon nanotube composites for oxygen reduction in acidic electrolyte," J Mater Chem A 3 (12), 6340-6350 (2015).
    43 Q. H. Wang, L. F. Jiao, Y. Han, H. M. Du, W. X. Peng, Q. N. Huan, D. W. Song, Y. C. Si, Y. J. Wang, and H. T. Yuan, "CoS2 Hollow Spheres: Fabrication and Their Application in Lithium-Ion Batteries," J Phys Chem C 115 (16), 8300-8304 (2011).
    44 R. C. Jin, L. X. Yang, G. H. Li, and G. Chen, "Hierarchical worm-like CoS2composed of ultrathin nanosheets as an anode material for lithium-ion batteries," J. Mater. Chem. A (2015).
    45 H. K. Mulmudi, S. K. Batabyal, M. Rao, R. R. Prabhakar, N. Mathews, Y. M. Lam, and S. G. Mhaisalkar, "Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs)," Phys Chem Chem Phys 13 (43), 19307-19309 (2011).
    46 J. Y. Lin and J. H. Liao, "Mesoporous Electrodeposited-CoS Film as a Counter Electrode Catalyst in Dye-Sensitized Solar," J Electrochem Soc 159 (2), D65-D71 (2012).
    47 L. Dloczik and R. Konenkamp, "Nanostructure transfer in semiconductors by ion exchange," Nano Lett 3 (5), 651-653 (2003).
    48 X. H. Xia, C. R. Zhu, J. S. Luo, Z. Y. Zeng, C. Guan, C. F. Ng, H. Zhang, and H. J. Fan, "Synthesis of Free-Standing Metal Sulfide Nanoarrays via Anion Exchange Reaction and Their Electrochemical Energy Storage Application," Small 10 (4), 766-773 (2014).
    49 H. W. Chen, C. W. Kung, C. M. Tseng, T. C. Wei, N. Sakai, S. Morita, M. Ikegami, T. Miyasaka, and K. C. Ho, "Plastic based dye-sensitized solar cells using Co9S8 acicular nanotube arrays as the counter electrode," J Mater Chem A 1 (44), 13759-13768 (2013).
    50 Y. Q. Zhang, X. H. Xia, J. Kang, and J. P. Tu, "Hydrothermal synthesized porous Co(OH)(2) nanoflake film for supercapacitor application," Chinese Sci Bull 57 (32), 4215-4219 (2012).
    51 Y. L. Hou, H. Kondoh, M. Shimojo, T. Kogure, and T. Ohta, "High-yield preparation of uniform cobalt hydroxide and oxide nanoplatelets and their characterization," J Phys Chem B 109 (41), 19094-19098 (2005).
    52 Y. Oaki, S. Kajiyama, T. Nishimura, and T. Kato, "Selective synthesis and thin-film formation of alpha-cobalt hydroxide through an approach inspired by biomineralization," J Mater Chem 18 (35), 4140-4142 (2008).
    53 X. H. Xia, J. P. Tu, J. Y. Xiang, X. H. Huang, X. L. Wang, and X. B. Zhao, "Hierarchical porous cobalt oxide array films prepared by electrodeposition through polystyrene sphere template and their applications for lithium ion batteries," J Power Sources 195 (7), 2014-2022 (2010).
    54 R. Z. Ma, Z. P. Liu, K. Takada, K. Fukuda, Y. Ebina, Y. Bando, and T. Sasaki, "Tetrahedral Co(II) coordination in alpha-type cobalt hydroxide: Rietveld refinement and X-ray absorption spectroscopy," Inorg Chem 45 (10), 3964-3969 (2006).
    55 H. C. Yang, W. H. Wang, K. S. Huang, and M. H. Hon, "Preparation and application of nanochitosan to finishing treatment with anti-microbial and anti-shrinking properties," Carbohyd Polym 79 (1), 176-179 (2010).
    56 K. Sakurai, T. Maegawa, and T. Takahashi, "Glass transition temperature of chitosan and miscibility of chitosan/poly(N-vinyl pyrrolidone) blends," Polymer 41 (19), 7051-7056 (2000).
    57 Z. Y. Fei, S. C. He, L. Li, W. J. Ji, and C. T. Au, "Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion," Chem Commun 48 (6), 853-855 (2012).
    58 W. Luo, Y. Xie, C. Z. Wu, and F. Zheng, "Spherical CoS2@ arbon core-shell nanoparticles: one-pot synthesis and Li storage property," Nanotechnology 19 (7) (2008).
    59 T. He, D. R. Chen, X. L. Jiao, Y. L. Wang, and Y. Z. Duan, "Solubility-controlled synthesis of high-quality Co3O4 nanocrystals," Chem Mater 17 (15), 4023-4030 (2005).
    60 J. H. Guo, Y. T. Shi, Y. T. Chu, and T. L. Ma, "Highly efficient telluride electrocatalysts for use as Pt-free counter electrodes in dye-sensitized solar cells," Chem Commun 49 (86), 10157-10159 (2013).
    61 M. X. Wu, X. A. Lin, A. Hagfeldt, and T. L. Ma, "A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells," Chem Commun 47 (15), 4535-4537 (2011).
    62 G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, "Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells," Nano Lett 6 (2), 215-218 (2006).
    63 S. S. Rao, C. V. V. M. Gopi, S. K. Kim, M. K. Son, M. S. Jeong, A. D. Savariraj, K. Prabakar, and H. J. Kim, "Cobalt sulfide thin film as an efficient counter electrode for dye-sensitized solar cells," Electrochim Acta 133, 174-179 (2014).
    64 G. R. Li, F. Wang, Q. W. Jiang, X. P. Gao, and P. W. Shen, "Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells," Angew Chem Int Edit 49 (21), 3653-3656 (2010).
    65 N. L. Yang, Q. Yuan, J. Zhai, T. X. Wei, D. Wang, and L. Jiang, "Enhanced Light Harvesting in Plasmonic Dye-Sensitized Solar Cells by Using a Topologically Ordered Gold Light-Trapping Layer," Chemsuschem 5 (3), 572-576 (2012).
    66 X. Chen, Y. Hou, B. Zhang, X. H. Yang, and H. G. Yang, "Low-cost SnSx counter electrodes for dye-sensitized solar cells," Chem Commun 49 (51), 5793-5795 (2013).

    無法下載圖示 校內:2020-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE