簡易檢索 / 詳目顯示

研究生: 林建翔
Lin, Jian-Xiang
論文名稱: 應用史托克-穆勒偏光法量測含散射效應之葡萄糖濃度研究
Research of Measuring Glucose Concentration with Scattering Effect by Using Stokes-Mueller polarimetry
指導教授: 羅裕龍
Lo, Yu-Lung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 78
中文關鍵詞: 史托克-穆勒偏光儀非等向性材料葡萄糖濃度非侵入式葡萄糖監測系統
外文關鍵詞: Stokes-Mueller polarimetry, anisotropic parameters, glucose concentration, non-invasive glucose monitoring
相關次數: 點閱:109下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前世界上有上百萬個病患再忍受著糖尿病的折磨,且每當用餐過後都需要刺穿自己的手指取出血來量測血糖濃度以確認胰島素注射的時機,但這樣侵入式的血糖量測方式不但有著被細菌感染的風險更讓人痛苦的是一天要刺穿手指數次,這實在令人難以忍受。因此為了幫助病人脫離這樣的痛苦無創血糖量測技術也因運而生並如火如荼的發展著。此研究所使用的技術是將六道不同偏振狀態的偏振光以55度入射角射入裝在射應比色槽裡的待測溶液,當光進入溶液中經過複雜散射過後再由垂直擺設的史托克儀接收散射光。之後再將量測到的史托克向量計算成微分穆勒矩陣就能夠分解出並找到能夠隨著葡萄糖變化的光學參數(如:線性雙折射、圓性雙折射、線二色性、圓二色性與去偏極化性質)。就實驗得出,我們所熟知應該與葡萄糖正相關的光旋轉量在實驗中卻是隨機亂跳,反倒是去偏極化程度卻與葡萄糖濃度呈負相關,且光是用商業的史托克儀就能達到100mg/dL的靈敏度。因此若再使用靈敏度較高的設備與更精確能夠擬合出複雜散射光的程式將能大大提高其發展可能。因此史托克-穆勒偏光法是發展無創血糖系統相當具有潛力的一種方式。

    Nowadays millions of people suffer from diabetes. They have to extract blood by piercing their finger after eating to measure the blood glucose concentration. The invasive way is not only unsafe but also accompanied by pain many times a day, so noninvasive glucose monitoring technique are rapid growth now. In this study, Stokes-Mueller polarimetry are used to analyze the depolarization states between glucose and tissue phantom. Six incident lights with different polarization states illuminate the liquid stored in quartz cuvette with 55° incident angle, and set the Stokes meter vertical to gather the output signal after the complicate scattering. Output Stokes vectors are used into the differential Mueller matrices and try to extract kinds of optical properties such as Linear birefringence(LB), circular birefringence(CB), Linear dichroism (LD), circular dichroism(CD) and Depolarization, then we can find out which parameter will change identically when the glucose is increased in the turbid media. According to the experiment, the optical rotation angle regarding to the glucose concentration was unexpectedly changed randomly, but the depolarization state was decreased when adding more glucose into the liquid and its sensitivity approached to 100mg/dL and this specification is close to the commercial Stokes meter. Thus, it has a great potential to develop noninvasive glucose monitoring system and diabetics would benefit greatly with this new device.

    Abstract i 中文摘要 iii 致謝 v Table of content vi List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Preface 1 1.2 Review of the Glucose Monitoring 2 1.3 Review of General Ellipsometry 6 1.4 Review of Mueller Matrix Method in Ellipsometer 9 1.5 Review of Glucose Sensing Using Optical Polarimetry and Stokes Mueller Polarimetry 12 1.6 Review of Simulation in Tissue Phantom 13 1.7 Overview of Chapters 14 Chapter 2 Basic Theories 15 2.1 Principle of Ellipsometry Measurement 15 2.2 Stokes-Mueller Representation 18 2.3 Basic Theories of Optically Anisotropic Properties 21 2.3.1 Circular Birefringence (CB) Materials 22 2.3.2 Depolarization Materials 24 2.4 Mueller Matrices of LB, CB, LD, and CD 26 2.5 Mueller Matrices Representation of Interfaces 27 Chapter 3 Extracting Glucose Concentration with Slightly Scattering Effect 31 3.1 Mueller Matrices Representation of Sample and Analysis by Decomposition Method 31 3.1.1 Decomposition of Circular Birefringence and Depolarization 32 3.1.2 Mueller Matrix Analysis by Genetic Algorithm Model 34 3.1.3 Extracting Optical Properties by Genetic Algorithm Model 37 3.2 Experimental Setup of Stokes-Mueller Polarimeter 39 3.3 Preparation of Tissue Phantom 40 3.4 Experimental Results of Glucose Extraction with Slightly Scattering Effect 41 Chapter 4 Extracting Glucose Concentration with Highly Scattering Effect 45 4.1 Mueller Matrices in Representation of Sample 45 4.2 Differential Mueller Matrix Model 46 4.3 Experimental Setup based upon Stokes-Mueller Polarimeter 51 4.4 Experimental Result of Glucose Extraction with highly Scattering Effects on Tissue Phantom 53 4.5 Experimental Result of Glucose Extraction with highly Scattering Effects on Human Finger 59 Chapter 5 Conclusions and Future Work 66 5.1 Conclusions 66 5.2 Future Work 67 Bibliography 69

    Amaral, C. E. F. D. and Wolf, B., “Current development in non-invasive glucose monitoring,” Medical Engineering and Physics, Vol. 30, Issue 5, pp. 541-549, (2008).

    Arteaga, O. and Canillas, A., “Analytic inversion of the Mueller-Jones polarization matrices for homogeneous media,” Optics Letters, Vol. 35, pp. 559-561, (2010).

    Aspenes, D. E. and Studna, A. A., “High precision scanning ellipsometer,” Applied Optics, Vol. 14, pp. 220-228, (1975).

    Azzam, R.M.A. “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Optics Letters, Vol. 2, pp. 148-150, (1978).

    Azzam, R.M.A., Giardina, K.A., and Lopez, A.G., “Conventional and generalized ellipsometry using the four-detector photopolarimeter,” Optical Engineering, Vol. 30, pp. 1583-1589, (1991).

    Beardsley, G. F., “Mueller scattering matrix of sea water,” JOSA, Vol. 58, pp. 52-57, (1968).

    Beaurepaire, E., Boccara, A. C., Lebec, M., Blanchot, L., and Saint J. H., "Full-field optical coherence microscopy," Optics Letters, Vol. 23, pp. 244-246, (1998).

    Bruulsema, J. T., Hayward, J. E., Farrell, T. J., Patterson, M. S., Heinemann, L., Berger, M., Essenpreis, and Böcker, D., “Correlation between blood glucose concentration in diabetics and noninvasively measured tissue optical scattering coefficient,” Optics letters, Vol. 22, Issue 3, pp. 190-192, (1997).

    Cameron, B. D., Baba, J. S., and Cote, G. L., “Optical polarimetry applied to the development of a noninvasive in-vivo glucose monitor,” Proceedings of SPIE, Vol. 3923, pp. 66-77, (2000).

    Compain, E., Drevillon, B., Huc, J., Parey, J. Y., and Bouree, J. E., “Complete Mueller matrix measurement with a single high frequency modulation,” Thin Solid Films, Vol. 47, pp. 313–314, (1998).

    Chipman, R. A., “Depolarization index and the average degree of polarization,” Applied Optics, Vol. 44, pp. 2490-2495, (2005).

    Collins, R. W. and Koh, J., “Dual rotating-compensator multichannel ellipsometer: instrument design for real-time Mueller matrix spectroscopy of surfaces and films,” JOSA-A, Vol. 16, pp. 1997–2006, (1999).

    Chu, M. X., Miyajima, K., Takahashi, D., Arakawa, T., Sano, K., Sawada, S. I., Kudo, H., Iwasaki, Y., Akiyoshi, K., Mochizuki, M., and Mitsubayashi, K., “Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment,” Talanta, Vol. 83, pp. 960–965, (2011).

    Deboo, B. J., Sasian, J. M., and Chipman, R. A., “Depolarization of diffusely reflecting man-made objects,” Applied Optics, Vol. 44, pp. 5434-5445, (2005).

    Dingari, N. C., Barman, I., Singh, G. P., Kang, J. W., Dasari, R. R., and Feld, M. S., “Investigation of the specificity of Raman spectroscopy in non-invasive blood glucose measurements,” Analytical and Bioanalytical Chemistry, Vol. 10, Issue 1007, pp. 2871–2880, (2011).

    Drevillon, B., Perrin, J., Marbot, R., Violet, A., and Dalby, J. L., “Fast polarization modulated ellipsometer using a microprocessor system for digital Fourier analysis,” Review of Scientific Instruments, Vol. 53, pp. 969-977, (1982).

    Drude, P., “Ueber die Gesetze der Reflexion und Brechung des Lichtes an der Grenze absorbirender Krystalle,” Annals of Physics, Vol. 268, pp. 584-625, (1887).

    Enejder, A. M. K., Scecina, T. G., Oh, J., Shih, M. H. W. C, Sasic, S., Horowitz, G. L., and Feld, M. S., “Raman spectroscopy for noninvasive glucose measurements,” Journal of Biomedical Optics, Vol. 10, Issue 3, pp. 031114-1-031114-9, (2005).

    Fujiwara, H., Spectroscopic ellipsometry principle and application, John Wiley & Sons Ltd., England, (2007)

    Gil, J. J. and Bernabeu, E., “Depolarization and polarization indices of an optical system,” Optical Acta., Vol. 33, pp. 85-189, (1986).

    Hauge, P. S. and Dill, F. H., “A rotating compensator Fourier ellipsometer,” Optics Communications, Vol.14, pp. 431-437, (1975).

    Hauge, P. S., Muller, R.H., and Smith, C.G., “Conventions and formulas for using the Mueller-Stokes calculus in ellipsometry,” Surface Science, Vol. 96, pp. 81–107, (1980).

    Hecht, E., Optics, Fourth ed. USA: Addison Wesley, (2002).

    Jang, S. and Fox, M. D., “Optical glucose sensor using a single Faraday rotator,” In Bioengineering Conference, Proceedings of the IEEE 23rd Northeast, pp. 11-12, (1997).

    Jasperson, S. N. and Schnattery, S. E., “An improved method for high reflectivity ellipsometry based on a new polarization modulation technique,” Review of Scientific Instruments, Vol. 40, pp. 761-767, (1969).

    Khoo, I. C. and Simoni, F., Physics of Liquid Crystalline Materials Vol. Chapter 13: Gorden and Breach Science Publishers, (1991).

    Kliger, D. S., Lewis, J. W., and Randall, C. E., Polarized light in optics and spectroscopy, Academic Press, Inc., (1990).

    Kobayashi, J. and Asahi, T., “Development of HAUP and its applications to various kinds of solids,” Proceedings of SPIE, San Diego, CA, USA, pp. 25-39, (2000).

    Kohl, M., Essenpreis, M., and Cope, M., “The influence of glucose concentration upon the transport of light in tissue-simulating phantoms,” Physics in medicine and biology, Vol. 40, Issue 7, pp. 1267, (1995).

    Kunnen, B., Macdonald, C., Doronin, A., Jacques, S., Eccles, M., and Meglinski, I., “Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media,” Journal of Biophotonics, Vol.8, Issue 4, pp. 317–323 (2015).

    Lambert, J. L., Morookian, J. M., Sirk, S. J., and Borchert, M. S., “Measurement of aqueous glucose in a model anterior chamber using Raman spectroscopy,” Journal of Raman Spectroscopy, Vol. 33, pp. 524–529, (2002).

    Larin, K., Larina, I., Motamedi, M., Gelikonov, V., Kuranov, R., and Esenaliev, R., “Potential application of optical coherence tomography for non-invasive monitoring of glucose concentration,” Proceedings of SPIE, Vol. 4263, pp. 83-90, (2001).

    Laskarakis, A., Logothetidis, S., Pavlopoulou, E., and Gioti, M., “Mueller matrix spectroscopic ellipsometry: formulation and application,” Thin Solid Films, Vol. 455-456, pp. 43-49, (2003).

    Lee, J., Collins, R. W., Veerasamy , V. S., and Robertson, J., “ Analysis of amorphous carbon thin films by spectroscopic ellipsometry,” Journal of Non-Crystalline Solids, Vol. 227-230, pp. 617-621, (1998).

    Liao, C. C. and Lo, Y. L., “Extraction of anisotropic parameters of turbid media using hybrid model comprising differential-and decomposition-based Mueller matrices,” Optics express, Vol. 21, Issue 14, pp. 16831-16853, (2013).

    Lin, L. H., Lo, Y. L., Liao, C. C., and Lin J. X. “Optical detection of glucose concentration in samples with scattering particles,” Applied Optics, Vol. 54, Issue 35, pp. 10425-10431, (2015).
    Lu, S. Y. and Chipman, R. A., “Interpretation of Mueller matrices based on polar decomposition,” JOSA-A, Vol. 13, Issue 5, pp. 1106-1113, (1996).

    Maier, J. S., Walker, S. A., Fantini, S., Franceschini, M. A., and Gratton, E., “Possible correlation between blood glucose concentration and the reduced scattering coefficient of tissues in the near infrared,” Optics Letters, Vol. 19, Issue 24, pp. 2062-2064, (1994).

    Malik, B. H., Pirnstill, C. W., and Coté, G. L., “Dual-wavelength polarimetric glucose sensing in the presence of birefringence and motion artifact using anterior chamber of the eye phantoms,” Journal of Biomedical Optics, Vol. 18, Issue 1, pp. 017007-1-017001-9, (2013).

    Malin, S. F., Ruchti, T. L., Blank, T. B., Thennadil, S. N., and Monfre, S. L., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy,” Clinical Chemistry, Vol. 45, Issue 9, pp. 1651-1658, (1999).
    Nee, S. M. F., “Depolarization and principal Mueller matrix measured by null ellipsometry,” Applied Optics, Vol. 40, Issue 28, pp. 4933-4939, (2001).

    Ninni, P. D., Bérubé-Lauzière, Y., Mercatelli, L., Sani, E., and Martelli, F., “Fat emulsions as diffusive reference standards for tissue simulating phantoms,” Applied Optics, Vol. 51, Issue 30, pp. 7176-7182, (2012).

    Ossikovski, R., “Differential matrix formalism for depolarizing anisotropic media,” Optics Letters, Vol. 36, pp. 2330-2332, (2011).

    Paik, W. and Bockris, J. O’M, “Exact ellipsometric measurement of thickness and optical properties of a thin light-absorbing film without auxiliary measurements,” Surface Science, Vol. 28, pp. 61-68, (1971).

    Park, H. D., Lee, K. J., Yoon, H. R., and Nam, H. H., “Design of a portable urine glucose monitoring system for health care,” Computers in biology and medicine, Vol. 35, Issue 4, pp. 275-286, (2005).

    Pham, T. T. H. and Lo, Y. L., “Extraction of effective parameters of turbid media utilizing Mueller matrix approach -A study of glucose sensing,” Journal of Biomedical Optics, Vol. 17, pp. 097002, (2012).

    Poddar, R., Sharma, S. R., Andrews, J. T., and Sen P., “Correlation between glucose concentration and reduced scattering coefficients in turbid media using optical coherence tomography,” Current Science, Vol. 95, Issue3, pp. 340-344, (2008).

    Robinson, M. R., Eaton, R. P., Haaland, D. M., Koepp, G. W., Thomas, E. V., Stallard, B. R., and Robinson, P. L., “Noninvasive Glucose Monitoring in Diabetic Patients: A Preliminary Evaluation,” Clinical Chemistry, Vol. 38, Issue 9, pp. 1318-1622, (1992).

    Rothen, A., “The ellipsometer, an apparatus to measure thicknesses of thin surface films,” Review of Scientific Instruments, Vol. 16, pp. 26-30, (1945).

    Savenkov, S., “Invariance of anisotropy properties presentation in scope of polarization equivalence theorems,” Proceedings of SPIE, Vol. 6536, pp. 65360G, (2007).

    Schellman, J. and Jensen, H. P. “Optical spectroscopy of oriented molecules,” Chem. Rev., Vol. 87, pp. 1359-1399, (1987).

    Tseng, S. H., Bargo, P., Durkin A., and Kollias N, “Chromophore concentrations, absorption and scattering properties of human skin in-vivo,” Optics express, Vol. 17, Issue. 17, pp. 14599-14617, (2009).

    Tuchin, V. V., Selected papers on tissue optics: applications in medical diagnostics and therapy, Vol. MS102. Bellingham, WA: SPIE Optical Engineering Press, (1994).

    Tuchin, V. V., Handbook of Optical Biomedical Diagnostics, Vol. PM107. Bellingham, WA: SPIE Optical Engineering Press, (2002).

    Zaccanti, G., Bianco, S. D., and Martelli, F., “Measurements of optical properties of high-density media,” Applied Optics, Vol. 42, Issue 19, pp. 4023-4030, (2003).

    Zhang, Y., Wei, H., Yang, H., He, Y., Wu, G., Xie, S., Zhu, Z., and He, R., “Noninvasive blood glucose monitoring during oral intake of different sugars with optical coherence tomography in human subjects,” Journal of Biophotonics, Vol. 6, Issue. 9, pp. 699–707, (2013).

    Zhou, G. X., Schmitt, J. M., and Ellicott, C. E., “Sensitive detection of optical rotation in liquids by reflection polarimetry,” Review of scientific instruments, Vol. 64, Issue 10, pp. 2801-2807, (1993).

    Zhou, Y., Zeng, N., Ji, Y., Li, Y., Dai, X., Li, P., Duan, L., Ma, H., and He, Y., “Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber,” Journal of Biomedical Optics, Vol. 16, Issue 1, pp. 015004-1-7, (2011).

    下載圖示 校內:2021-08-18公開
    校外:2021-08-18公開
    QR CODE