| 研究生: |
呂淑婷 Lu, Shuting-Ting |
|---|---|
| 論文名稱: |
A型鏈球菌誘發內皮細胞炎症小體之活化 Endothelial inflammasome activation induced by group A streptococcus |
| 指導教授: |
蔡佩珍
Tsai, Pei-Jane |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 微生物及免疫學研究所 Department of Microbiology & Immunology |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 47 |
| 中文關鍵詞: | A型鏈球菌 、炎症小體 、壞死性筋膜炎 、細胞焦亡 |
| 外文關鍵詞: | Group A streptococcus, inflammasome, necrotizing fasciitis, pyroptosis |
| 相關次數: | 點閱:68 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
壞死性筋膜炎是侵襲性A型鏈球菌所造成最嚴重的疾病型態,病理現象主要是呈現肌肉快速損壞伴隨凝血機制紊亂與血管功能障礙。宿主遭遇侵襲性A型鏈球菌感染高度誘發前發炎性細胞激素 (IL-1進一步引起血管內皮功能障礙、瀰漫性血管內凝血、微血管洩漏以及多器官功能衰竭。IL-1已知是由炎症小體inflammasome調控活化之caspase-1活化切割。然而,促成壞死性筋膜炎病理機制非常複雜,許多基本問題仍然所知甚少。在這裡,我們成功以肌肉注射的動物模式重現壞死性筋膜炎,不但產生肌肉壞死和血管功能紊亂,也誘發炎症小體活化並伴隨大量前發炎性細胞激素 (IL-1釋放。另外,在細胞實驗當中,血管內皮細胞也可在A型鏈球菌感染之後活化炎症小體。進一步抑制caspase-1活性,內皮細胞釋放出pyroptosis標記物質LDH和HMGB-1皆明顯減少,細胞外的細菌數也同時降低;在活體中,caspase-1有效防止A型鏈球菌誘導的肌肉炎症小體激活和肌肉損傷。進一步,我們證明A型鏈球菌的毒力因子,鏈球菌溶血素S (SLS),參與在內皮細胞炎症小體活化及pyropotosis的過程。在活體試驗中,SLS突變株較無法誘發肌肉炎症小體活化和嚴重的肌肉破壞。整體而言,我們推測:內皮細胞炎症小體活化可能產生過度發炎反應,進而加重侵襲性A型鏈球菌所造成的急性肌肉壞死。綜上所述,我們證明了透過鏈球菌溶血素S逃脫吞噬體的A型鏈球菌,誘發內皮細胞炎症小體活化及典型的caspase-1依賴型的pyroptosis,使得細菌逃脫出細胞外,進而引起嚴重的肌肉破壞。因此,我們推測A型鏈球菌誘導快速肌肉破壞是內皮細胞炎症小體活化而造成過度發炎反應的結果。
The most severe form of invasive GAS disease is necrotizing fasciitis described as rapidly muscle destruction with marked coagulation disturbance and vascular dysfunction. In response to invasive GAS disease, a large quantity of proinflammatory cytokine, IL-1, is induced and associated with vascular dysfunction, disseminated intravascular coagulation (DIC), microvascular leakage and multiple organ dysfunctions. IL-1β is known to be processed by caspase-1, a cysteine protease regulated by a multiprotein complex called inflammasome. However, the pathogenesis in necrotizing fasciitis is so complicated that many fundamental questions remain poorly understood. Here, we successfully reconstructed the animal model of necrotizing fasciitis that myonecrosis and vascular damages were induced by intramuscular injection of GAS, and inflammasome activation accompanied with large amount of IL-1β production were found. In addition, endothelial inflammasome activations were induced by GAS infection. Pyroptosis markers, released LDH and HMGB-1, and extracellular bacterial numbers were prohibited by caspase-1 inhibitor in GAS-infected endothelial cells. Blockage of caspase-1 in vivo prevented GAS-induced muscular inflammasome activation and muscular damage. Further, we demonstrated that streptolysin S of GAS involved in GAS-induced endothelial inflammasome activation and pyropotosis by infection with isogenic SLS mutant. In addition, the SLS mutant lost its capacity causing muscular inflammasome activation and severe muscle destruction in vivo. Taken together, we demonstrated that phagosomal escaped GAS, which mediated by SLS, induced severe muscle destruction was mediated through endothelial inflammasome activation accompanied with a canonical caspase-1 dependent pyroptosis and further released the cytosomal GAS. Thus, we hypothesized that rapid muscle destruction induced by GAS is the consequence of excessive inflammatory responses followed by endothelial inflammasome activation.
1. Dochez R, A.O., Lancefield RC., Studies on the biology of Streptococcus. . J Exp Med, 1919. 30: p. 179-213.
2. Carapetis, J.R., et al., The global burden of group A streptococcal diseases. Lancet Infect Dis, 2005. 5(11): p. 685-94.
3. Stevens, D.L., Invasive group A streptococcus infections. Clin Infect Dis, 1992. 14(1): p. 2-11.
4. O'Brien, K.L., et al., Epidemiology of invasive group A streptococcus disease in the United States, 1995-1999. Clin Infect Dis, 2002. 35(3): p. 268-76.
5. Lamagni, T.L., et al., Epidemic of severe Streptococcus pyogenes infections in injecting drug users in the UK, 2003-2004. Clin Microbiol Infect, 2008. 14(11): p. 1002-9.
6. O'Grady, K.A., et al., The epidemiology of invasive group A streptococcal disease in Victoria, Australia. Med J Aust, 2007. 186(11): p. 565-9.
7. O'Loughlin, R.E., et al., The epidemiology of invasive group A streptococcal infection and potential vaccine implications: United States, 2000-2004. Clin Infect Dis, 2007. 45(7): p. 853-62.
8. Ralph, A.P. and J.R. Carapetis, Group A streptococcal diseases and their global burden. Curr Top Microbiol Immunol, 2013. 368: p. 1-27.
9. Olsen, R.J. and J.M. Musser, Molecular pathogenesis of necrotizing fasciitis. Annu Rev Pathol, 2010. 5: p. 1-31.
10. Puvanendran R, H.J., Pasupathy S., Necrotizing fasciitis. Can Fam Physician. , 2009. 55(10): p. 981-7.
11. Henningham, A., et al., Pathogenesis of group A streptococcal infections. Discov Med, 2012. 13(72): p. 329-42.
12. Tsitsilonis, S., et al., Necrotizing fasciitis: is the bacterial spectrum changing? Langenbecks Arch Surg, 2013. 398(1): p. 153-9.
13. Shannon, O., H. Herwald, and S. Oehmcke, Modulation of the coagulation system during severe streptococcal disease. Curr Top Microbiol Immunol, 2013. 368: p. 189-205.
14. Bryant, A.E., Biology and pathogenesis of thrombosis and procoagulant activity in invasive infections caused by group A streptococci and Clostridium perfringens. Clin Microbiol Rev, 2003. 16(3): p. 451-62.
15. Fontaine, M.C., J.J. Lee, and M.A. Kehoe, Combined contributions of streptolysin O and streptolysin S to virulence of serotype M5 Streptococcus pyogenes strain Manfredo. Infect Immun, 2003. 71(7): p. 3857-65.
16. Bryant, A.E., et al., Vascular dysfunction and ischemic destruction of tissue in Streptococcus pyogenes infection: the role of streptolysin O-induced platelet/neutrophil complexes. J Infect Dis, 2005. 192(6): p. 1014-22.
17. Sumpio, B.E., J.T. Riley, and A. Dardik, Cells in focus: endothelial cell. Int J Biochem Cell Biol, 2002. 34(12): p. 1508-12.
18. Chelsom, J., et al., Necrotising fasciitis due to group A streptococci in western Norway: incidence and clinical features. Lancet, 1994. 344(8930): p. 1111-5.
19. Stevens, D.L., et al., Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin A. N Engl J Med, 1989. 321(1): p. 1-7.
20. Bisno, A.L. and D.L. Stevens, Streptococcal infections of skin and soft tissues. N Engl J Med, 1996. 334(4): p. 240-5.
21. de Jong, H.K., T. van der Poll, and W.J. Wiersinga, The systemic pro-inflammatory response in sepsis. J Innate Immun, 2010. 2(5): p. 422-30.
22. Lungstras-Bufler, K., et al., High cytokine levels at admission are associated with fatal outcome in patients with necrotizing fasciitis. Eur Cytokine Netw, 2004. 15(2): p. 135-8.
23. Sahoo, M., et al., Role of the inflammasome, IL-1beta, and IL-18 in bacterial infections. ScientificWorldJournal, 2011. 11: p. 2037-50.
24. Diacovich, L. and J.P. Gorvel, Bacterial manipulation of innate immunity to promote infection. Nat Rev Microbiol, 2010. 8(2): p. 117-28.
25. Wen, H., E.A. Miao, and J.P. Ting, Mechanisms of NOD-like receptor-associated inflammasome activation. Immunity, 2013. 39(3): p. 432-41.
26. Bauernfeind, F. and V. Hornung, Of inflammasomes and pathogens--sensing of microbes by the inflammasome. EMBO Mol Med, 2013. 5(6): p. 814-26.
27. Delbridge, L.M. and M.X. O'Riordan, Innate recognition of intracellular bacteria. Curr Opin Immunol, 2007. 19(1): p. 10-6.
28. Yu, H.B. and B.B. Finlay, The caspase-1 inflammasome: a pilot of innate immune responses. Cell Host Microbe, 2008. 4(3): p. 198-208.
29. Tsuji, N.M., et al., Roles of caspase-1 in Listeria infection in mice. Int Immunol, 2004. 16(2): p. 335-43.
30. Miller, L.S., et al., Inflammasome-mediated production of IL-1beta is required for neutrophil recruitment against Staphylococcus aureus in vivo. J Immunol, 2007. 179(10): p. 6933-42.
31. Lara-Tejero, M., et al., Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med, 2006. 203(6): p. 1407-12.
32. Sansonetti, P.J., et al., Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity, 2000. 12(5): p. 581-90.
33. Harder, J., et al., Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor. J Immunol, 2009. 183(9): p. 5823-9.
34. Aroian, R. and F.G. van der Goot, Pore-forming toxins and cellular non-immune defenses (CNIDs). Curr Opin Microbiol, 2007. 10(1): p. 57-61.
35. Church, L.D., G.P. Cook, and M.F. McDermott, Primer: inflammasomes and interleukin 1beta in inflammatory disorders. Nat Clin Pract Rheumatol, 2008. 4(1): p. 34-42.
36. Fink, S.L. and B.T. Cookson, Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol, 2007. 9(11): p. 2562-70.
37. Kayagaki, N., et al., Non-canonical inflammasome activation targets caspase-11. Nature, 2011. 479(7371): p. 117-21.
38. Miao, E.A., et al., Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol, 2010. 11(12): p. 1136-42.
39. Tsai, P.J., et al., Effect of group A streptococcal cysteine protease on invasion of epithelial cells. Infect Immun, 1998. 66(4): p. 1460-6.
40. Hung, C.H., et al., Synergistic effects of streptolysin S and streptococcal pyrogenic exotoxin B on the mouse model of group A streptococcal infection. Med Microbiol Immunol, 2012. 201(3): p. 357-69.
41. Olsen, R.J., S.A. Shelburne, and J.M. Musser, Molecular mechanisms underlying group A streptococcal pathogenesis. Cell Microbiol, 2009. 11(1): p. 1-12.
42. Pusztaszeri, M.P., W. Seelentag, and F.T. Bosman, Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem, 2006. 54(4): p. 385-95.
43. Vande Walle, L., T.D. Kanneganti, and M. Lamkanfi, HMGB1 release by inflammasomes. Virulence, 2011. 2(2): p. 162-5.
44. Burns, E.H., Jr., A.M. Marciel, and J.M. Musser, Activation of a 66-kilodalton human endothelial cell matrix metalloprotease by Streptococcus pyogenes extracellular cysteine protease. Infect Immun, 1996. 64(11): p. 4744-50.
45. Riedemann, N.C., R.F. Guo, and P.A. Ward, Novel strategies for the treatment of sepsis. Nat Med, 2003. 9(5): p. 517-24.
46. Jamilloux, Y., et al., Inflammasome activation restricts Legionella pneumophila replication in primary microglial cells through flagellin detection. Glia, 2013. 61(4): p. 539-49.
47. Nakagawa, I., et al., Autophagy defends cells against invading group A Streptococcus. Science, 2004. 306(5698): p. 1037-40.
48. Schroder, K. and J. Tschopp, The inflammasomes. Cell, 2010. 140(6): p. 821-32.
49. Franchi, L., R. Munoz-Planillo, and G. Nunez, Sensing and reacting to microbes through the inflammasomes. Nat Immunol, 2012. 13(4): p. 325-32.
50. Mariathasan, S., et al., Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature, 2004. 430(6996): p. 213-8.
51. Timmer, A.M., et al., Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem, 2009. 284(2): p. 862-71.
52. Gurcel, L., et al., Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell, 2006. 126(6): p. 1135-45.