| 研究生: |
涂艾妮 Tu, Ai-Ni |
|---|---|
| 論文名稱: |
氮化銦鎵系列金半金光檢測器之製作與研究 Fabrication and Investigation of InGaN-based Metal-Semiconductor-Metal Photodetectors |
| 指導教授: |
張守進
Chang, Shoou-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 暗電流 、光檢測器 、覆蓋層 、氮化銦鎵 |
| 外文關鍵詞: | cap layer, dark current, photodetector, InGaN |
| 相關次數: | 點閱:82 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要著重在氮化銦鎵系列金半金光檢測器的製作與研究。在本實驗中,我們使用金屬有機化學氣相沉積系統成長氮化銦鎵的試片,其中銦的摻雜比例為0.1,可將光檢測器所偵測的波長調變至近紫外光到紫/藍光的範圍內。
首先,為了提升金半金光檢測器的光特性,我們使用透明導電的氧化物材料銦錫氧化物和摻雜鎵原子的氧化鋅當作電極,取代傳統的金屬電極。與傳統鎳金接觸電極比較,使用透明電極可以降低元件的暗電流並增加響應度的拒斥比,在-10 V的偏壓下,使用銦錫氧化物和摻雜鎵原子的氧化鋅當做透明電極的光檢測器,其暗電流可分別降低五個和三個數量級,而在-5 V的偏壓下,其拒斥比則分別為95.98和70.97。
為了增加蕭基接觸的品質,我們在金屬與半導體之間插入一層二氧化矽氧化層製作出金屬-絕緣層-半導體結構的光檢測器。我們使用兩種鍍膜沉積系統來沉積二氧化矽,分別是電漿輔助化學氣相沉積系統和光激化學氣相沉積系統。根據掃描式電子顯微鏡、原子力顯微鏡的表面掃描分析和表面鍵結的化學分析,指出使用光激化學氣相沉積系統所成長的二氧化矽的品質優於使用電漿輔助化學氣相沉積法。與傳統的金半金結構的元件相比,金屬-絕緣層-半導體結構的光檢測器可更加有效抑制暗電流,在-10 V的偏壓下,使用光激化學氣相沉積法和電漿輔助化學氣相沉積法成長二氧化矽應用在金屬-絕緣層-半導體結構的光檢測器,其暗電流分別為5.66×10-10 A和3.62×10-11 A,此外,我們並可發現,藉由插入一層二氧化矽鈍化層之後,其元件的光響應受到偏壓影響的程度較小。
藉由上述的結果,我們更進一步使用低溫氮化鋁覆蓋層和未活化的鎂摻雜氮化鎵覆蓋層應用於氮化銦鎵系列光檢測器。與傳統無覆蓋層的金半金光檢測器相比,藉著加入此覆蓋層可以有效降低元件的暗電流值並增加響應的拒斥比,此結果可歸因於覆蓋層可以導致較大與較厚的蕭基位障,且對半導體表面能態有鈍化的作用。在-10 V的偏壓下,無覆蓋層、具有低溫氮化鋁覆蓋層及具有鎂摻雜氮化鎵覆蓋層的光檢測器之暗電流值分別為2.37×10-7 A、1.40×10-13 A和1.81×10-13 A;而在-5 V的偏壓下,具有低溫氮化鋁覆蓋層和未活化的鎂摻雜氮化鎵覆蓋層的拒斥比則分別為7.22×102和3.83×103。因此,藉由此研究結果,我們知道將低溫氮化鋁覆蓋層和未活化的鎂摻雜氮化鎵覆蓋層應用於氮化銦鎵光檢測器的製作上,可有效改善元件的特性。
The main goal of this thesis is the fabrication and investigation of InGaN-based metal-semiconductor-metal (MSM) photodetectors (PDs). The samples used in this experiment were prepared by metal organic chemical vapor deposition system (MOCVD). The use of InGaN alloys offers the possibility of shifting the detection edge from the UV to the VIS (and even the IR) by changing the indium composition in the InGaN layers. PDs in this study were designed to be sensitive in the near UV to violet/blue wavelength range with 0.1 In composition.
First, to enhance the optical properties of MSM PDs, the conventional metal electrodes were replaced with transparent conducting oxides (TCOs) ITO or GZO. Compared with conventional Ni/Au contacts, it was found that we can achieve significantly smaller dark current and larger rejection ratio by using transparent and conductive oxide layers ITO or GZO as electrodes. With the same -10 V applied bias, the dark current of the MSM PDs with ITO and GZO electrodes could be reduced by five orders and three orders, respectively. With the same -5 V applied bias, it was found that the rejection ratios were 95.98 and 70.97 for PDs with ITO and GZO electrodes, respectively.
To achieve high quality Schottky contacts, we inserted an silicon dioxide layer between metal and the semiconductor to fabricated PDs with MIS structures. We adopted two deposition methods to grow SiO2 layer, PECVD and photo-CVD. According to SEM, AFM and ESCA analyses, these indicated that the quality of SiO2 deposited by photo-CVD was reasonably better than by PECVD. Compared with conventional MSM PDs, the dark current measured from MIS PDs were much smaller. With the same -10 V applied bias, the reverse leakage current were 5.66×10-10 A and 3.62×10-11 A for the PDs with SiO2 passivation layer deposited by PECVD and photo-CVD, respectively. Besides, it was found that we could lower the dependence on bias for spectral responses by inserting a SiO2 layer.
Based on the aforementioned results, we apply in situ low-temperature AlN cap layer and unactivated Mg-doped GaN cap layer to the fabrication of InGaN-based PDs. Compared with conventional MSM PDs without cap layers, it was found that we can achieve significantly smaller dark current and larger rejection ratio by inserting in situ grown cap layers. This result could be attributed to the thicker and higher potential barrier and effective surface passivation after inserting in situ grown cap layer. With the same -10 V applied bias, the dark leakage current for PDs without cap layers, with LT-AlN cap layer and with Mg-doped GaN cap layer were 2.37×10-7 A, 1.40×10-13 A and 1.81×10-13 A, respectively. With the same -5 V applied bias, it was found that the rejection ratios were 7.22×102 and 3.83×103 for PDs with LT-AlN cap layer and unactivated Mg-doped GaN cap layer, respectively. Therefore, the performance of InGaN-based MSM PDs could be effectively improved by inserting an in situ grown cap layer.
[References]
Chapter 1
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Mukai, Y. Sugimoto, and H. Kiyoku, “Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes,” Appl. Phys. Lett., vol. 69, pp. 4056–4058, 1996.
[2] C. H. Kuo, C. C. Lin, S. J. Chang, Y. P. Hsu, J. M. Tsai, W. C. Lai, and P. T. Wang, “Nitride-based light-emitting diodes with p-AlInGaN surface layers,” IEEE Trans. Electron Devices, vol. 52, pp. 2346–2349, 2005.
[3] U. K. Mishra, Y. F. Wu, B. P. Keller, S. Keller, and S. P. Denbaars, “GaN microwave electronics,” IEEE Trans. Microw. Theory Tech., vol. 46, pp. 756–761, 1998.
[4] G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, and U. K.Mishra, “High-performance (Al, Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxial overgrown GaN,” Appl. Phys. Lett., vol. 75, pp. 247–249, 1999.
[5] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. AsifKhan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection,” Appl. Phys. Lett., vol. 70, pp. 2277–2279, 1997.
[6] C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu, and J. F. Chen, “GaN metal–semiconductor–metal ultraviolet photodetectors with transparent indium–tin–oxide Schottky contacts,” IEEE Photon. Technol. Lett., vol. 13, pp. 848–850, 2001.
[7] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes and P. Gibart, “III nitrides, and UV detection,” J. Phys. Condens. Matter, vol. 13, pp. 7115–7137, 2001.
[8] Z. Huang, D. B. Mott, and P. K. Shu, NASA Technical Briefs, pp. 50, 1999.
[9] F. A. Ponce and D.P. Bour, Nature 386, pp. 351, 1997.
[10] J. C. Roberts, C. A. Parker, J. F. Muth, S. F. Leboeuf, M .E. Aumer, S. M. Bedair, and M. J. Reed, “Ultraviolet-Visible Metal-Semiconductor-Metal Photodetectors Fabricated from InxGa1-xN (0 ≦x ≦0.13),” J. Electron. Mater., vol. 31, pp. L1-L6, 2002.
[11] M. G. Cheong, H. S. Yoon, R. J. Choi, C. S. Kim, S. W. Yu, C. H. Hong, E. K. Suh, and H. J. Lee, ”Effects of growth interruption on the optical and the structural properties of InGaN/GaN quantum wells grown by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 90, pp. 5642-5646 , 2001.
[12] T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, and I. Akasaki, ” Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect,” Appl. Phys. Lett., Vol. 73, pp. 1691-1693, 1998.
[13] S. Kim, K. Lee, K. Park, and C. S. Kim, “Effects of barrier growth temperature on the properties of InGaN/GaN multi-quantum wells,” J. Cryst. Growth., Vol. 247, pp. 62-68, 2003.
[14] M. Rao, D. Kim, and S. Mahajan, “Compositional dependence of phase separation in InGaN layers,” Appl. Phys. Lett., Vol. 85, pp. 1961-1963, 2004.
[15] C. A. Chang, C. F. Shih, N. C. Chen, T. Y. Lin, and K. S. Liu, “In-rich In1–xGaxN films by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., Vol. 85, pp. 6131-6133, 2004.
[16] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, U. K. Mishra, “Power and linearity characteristics of GaN MISFETs on sapphire substrate,” IEEE Electron Device Lett., Vol. 25, pp. 55-57, 2004.
[17] C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition,” J. Appl. Phys., Vol. 67, pp. 3350-3353, 1990.
[18] S. J. Chang, Y. K. Su, F. S. Juang, C. T. Lin, C. D. Chiang, and Y. T. Cherng, “Photo-enhanced native oxidation process for Hg0.8Cd0.2Te photoconductors,” IEEE J. Quantum Electron., Vol. 36, pp.583, 2000.
[19] C. T. Lin, Y. K. Su, S. J. Chang, H. T. Huang, S. M. Chang, and T. P. Sun, “Effects of passivation and extraction surface trap density on the 1/f noise of HgCdTe photoconductive detector,” IEEE Photon. Technol. Lett., Vol. 9, pp. 232-234, 1997.
[20] C. T. Lin, Y. K. Su, H. T. Huang, S. J. Chang, G. S. Chen, T. P. Sun, and J. J. Luo, “Electrical properties of the stacked ZnS/photo-enhanced native oxide passivation for long wavelength HgCdTe photodiodes,” IEEE Photon. Technol. Lett., Vol. 8, pp. 676-678, 1996.
Chapter 2
[1] D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, Inc., 1998.
[2] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons, New York, 1981.
[3] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd ed. New York, Oxford University Press, 1988, ch. 1.
[4] W. Schottky, “Halbleitertheorie der Sperrschicht,” Naturwissenschaften, Vol. 26, pp. 843, 1938.
[5] E. R. Rhoderick, “Metal-Semiconductor Contacts,” IEE Proc., Vol. 129, pp. 1-24, 1982.
[6] C. J. Wei, H. J. Klein, and H. Beneking, “Symmetrical mott barrier as a fast photodetector,” Electron. Lett., Vol. 17, pp. 688-690, 1981.
[7] M. Marso, M. Horstmann, M. Hardtdegen, P. Kordos, and H. Luth, “Electrical behavior of the InP/InGaAs based MSM 2DEG diode,” Solid-State Electron., Vol. 41, pp. 25, 1997.
[8] P. Bhattacharya, Semiconductor optoelectronic devices, 2nd ed., Prentice Hall, New Jersey, 1997.
[9] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., Vol. 83, pp. 6148, 1998.
[10] X. Wang, X. Wang, B. Wang, H. Xiao, H. Liu, J. Wang, Y. Zeng, and J. Li, “High responsivity ultraviolet photodetector based on crack-free GaN on Si (111),” Phys. Stat. Sol. (c), Vol. 4, pp. 1613-1616, 2007.
[11] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-Illuminated GaN Metal-Semiconductor-Metal UV Photodetector with High Internal Gain,” Jpn. J. Appl. Phys., Vol. 40, pp. L505-L507, 2001.
[12] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett., Vol. 79, pp. 1417-1419, 2001.
[13] K. Leung, A. F. Wright, and E. B. Stechel, “Charge accumulation at a threading edge dislocation in gallium nitride,” Appl. Phys. Lett., Vol. 74, pp. 2495-2497, 1999.
Chapter 3
[1] M. Asif Khan, A. R. Bhattarai, J. N. Kkuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction,” Appl. Phys.Lett., Vol. 63, pp. 1214-1216, 1993.
[2] O. Aktas, Z. F. Fan, S. N. Mohammad, A. E. Botchkarev, and H. Morko, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors,” Appl. Phys. Lett., Vol. 69, pp. 3872-3874, 1996.
[3] Y. F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. DenBaars, and U. K. Mishra, “Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors,” Appl. Phys. Lett., Vol. 69, pp. 1438-1440, 1996.
[4] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., Vol. 79, pp. 7433-7473, 1996.
[5] A. T. Ping, A. C. Schmitz, M. A. Khan, and I. Adeaida, “Characterisation of Pd Schottky barrier on n-type GaN,” Electron. Lett., Vol. 32, pp. 68-70, 1996.
[6] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, and C. Y. Chang, “Study of Schottky barriers on n-type GaN grown by low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 67, pp. 2657-2659 ,1996.
[7] J. D. Guo, F. M. Pan, M. S. Feng, R. J. Guo, P. F. Chuo, and C. Y. Chang, “Schottky contact and the thermal stability of Ni on n-type GaN,” J. Appl. Phys., Vol. 80, pp. 1623-1627 ,1996.
[8] W. Gao, A. Khan, P. R. Berger, R. G. Hunsperger, G. Zydzik, and A. Y. Cho, “In0.53Ga0.47As metal-semiconductor-metal photodiodes with transparent cadmium tin oxide Schottky contacts,” Appl. Phys. Lett., Vol. 65, pp. 1930 ,1994.
[9] J. W. Seo, C. Caneau, and I. Adesida, “Application of indium-tin-oxide with improved transmittance at 1.3 μm for MSM photodetectors,” IEEE Photonics Technol. Lett., Vol. 5, pp. 1313-1315 ,1993.
[10] J. K. Sheu, Y. K. Su, G. C. Chi, M. J. Jou, and C. M. Chang, “Effects of thermal annealing on the indium tin oxide Schottky contacts of n-GaN,” Appl. Phys. Lett., Vol. 72, pp. 3317-3319, 1998.
[11] Y. K. Su, S. J. Chang, C. H. Chen, J. F. Chen, G. C. Chi, J. K. Sheu, W. C. Lai, J. M. Tsai, “GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes,” IEEE Sens. J., vol. 2, pp. 366-371, 2002.
[12] T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering,” Jpn. J. Appl. Phys., Vol. 24, pp. L781-L784, 1985.
[13] S. Kim, J. Jeon, H. W. Kim, J. G. Lee, and C. Lee, “Influence of substrate temperature and oxygen/argon flow ratio on the electrical and optical properties of Ga-doped ZnO thin films prepared by rf magnetron sputtering,” Cryst. Res. Technol., Vol. 41, pp. 1194-1197, 2006.
[14] W. Kerm, “The Evolution of Silicon Wafer Cleaning Technology,” J. Electronchem. Soc., Vol. 137, pp. 1887, 1990.
Chapter 4
[1] Q. Chen, M. A. Khan, C. J. Sun, and J. W. Yang, “Visible-blind ultraviolet photodetectors based on GaN p-n junctions,” IEEE Electron Lett., Vol. 31, pp.1781-1782, 1995.
[2] J. W. Ju, E. S. Kang, H. S. Kim, L. W. Jang, H. K. Ahn, J. W. Jeon, and I. H. Leea, “Metal-organic chemical vapor deposition growth of InGaN/GaN high power green light emitting diode: Effects of InGaN well protection and electron reservoir layer,” J. Appl. Phys., Vol. 102, pp. 053519, 2007.
[3] R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett., Vol. 94, pp. 063505, 2009.
[4] J. K. Sheu, C. C. Yang, S. J. Tu, K. H. Chang, M. L. Lee, W. C. Lai, and L. C. Peng, “Demonstration of GaN-based solar cells with GaN/InGaN superlattice absorption layers,” IEEE Electron Device Lett., Vol.30, pp. 225-227, 2009.
[5] K. S. Kim, J. K. Son, S. N. Lee, Y. J. Sung, H. S. Paek, H. K. Kim, M. Y. Kim, K. H. Ha, H. Y. Ryu, O. H. Nam, T. Jang, and Y. J. Park, “Characteristics of long wavelength InGaN quantum well laser diodes,” Appl. Phys. Lett., Vol. 92, pp. 101103, 2008.
[6] T. K. Ko, S. C. Shei, S. J. Chang, Y. Z. Chiou, R. M. Lin, W. S. Chen, C. F. Shen, C. S. Chang, and K. W. Lin, “InGaN p–i–n ultraviolet-A band-pass photodetectors,” IEE Proc.-Optoelectron., Vol. 153, pp. 212-214, 2006.
[7] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, “,” Appl. Phys. Lett., Vol. 82, pp. 2913, 2003.
[8] D. Walker, X. Zhang, A. Saxler, P. Kung, J. Xu, and M. Razeghi, “AlxGa1 – xN (0 x 1) ultraviolet photodetectors grown on sapphire by metal-organic chemical-vapor deposition,” Appl. Phys. Lett., Vol. 70, pp. 949-951, 1997.
[9] E. Monroy, F. Calle, J. L. Pau, E. Munoz, and F. Omnes, “Low-noise metal-insulator-semiconductor UV photodiodes based on GaN,” IEE Electron. Lett. Vol. 36, pp. 2096-2098, 2000.
[10] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, low-noise metal–Semiconductor–metal ultraviolet photodetectors based on GaN,” Appl. Phys. Lett., Vol. 74, pp. 762-764, 1999.
[11] J. Li, W. R. Donaldson, and T. Y. Hsiang, “Very fast metal-semiconductor-metal ultraviolet photodetectors on GaN with submicron finger width,” IEEE Photonics Technol. Lett., Vol. 15, pp. 1141-1143, 2003.
[12] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Comprehensive characterization of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN,” J. Appl. Phys., Vol. 83, pp. 6148-6160, 1998.
[13] D. Kapolnek, X. H. Wu, B. Heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars, and J. S. Specka, “Structural evolution in epitaxial metalorganic chemical vapor deposition grown GaN films on sapphire,” Appl. Phys. Lett., Vol. 67, pp. 1541-1543, 1995.
[14] A. Chini, J. Wittich, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Power and linearity characteristics of GaN MISFETs on sapphire substrate,” IEEE Electron Device Lett., Vol. 25, pp. 55-57, 2004.
[15] Y. Nakano, T. Kachi, and T. Jimbo, “Characteristics of SiO2/n-GaN interfaces with β-Ga2O3 interlayers,” Appl. Phys. Lett., Vol. 83, pp. 4336-4338, 2003.
[16] R. Mehandru, B. Luo, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via, and A. Crespo, “AlGaN/GaN metal–oxide–semiconductor high electron mobility transistors using Sc2O3 as the gate oxide and surface passivation,” Appl. Phys. Lett., Vol. 82, pp. 2530, 2003.
[17] J. Kim, R. Mehandru, B. Luo, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, and Y. Irokawa, “Characteristics of MgO/GaN gate-controlled metal–oxide– semiconductor diodes,” Appl. Phys. Lett., Vol. 80, pp. 4555-4557, 2002.
[18] M. Hong, K. A. Anselm, J. Kwo, H. M. Ng, J. N. Baillargeon, A. R. Kortan, C. M. Lee, J. I. Chyi, and T. S. Lay, “Properties of Ga2O3 (Gd2O3)/GaN metal-insulator-semiconductor diodes,” J. Vac. Sci. Technol. B, Vol. 18, pp. 1453-1456, 2000.
[19] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator–semiconductor interfaces with low interface state density,” Appl. Phys. Lett., Vol. 73, pp. 809-811, 1998.
[20] B. Gaffey, L. J. Guido, X. W. Wang, and T. P. Ma, “High-quality oxide/nitride/oxide gate insulator for GaN MIS structures,” IEEE Trans. Electron Devices, Vol. 48, pp. 458-464, 2001.
[21] T. Inushima, N. Hirose, K. Urata, K. Ito, and S. Yamazaki, “Film growth mechnism of photo-chemical vapor deposition,” Appl. Phys. A., Vol. 47, pp. 229-236, 1988.
[22] C. J. Huang and Y. K. Su, “ Research of SiO2/InP structure prepared by photo-CVD,” J. Electron. Mater., Vol. 19, pp. 753-756, 1990.
[23] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. Gong, C. S. Chang, and S. H. Liu, “The properties of photo chemical-vapor deposition SiO2 and its application in GaN metal-insulator semiconductor ultraviolet photodetectors,” J. Electron. Mater., Vol. 32, pp. 395-399, 2002.
[24] P. J. Hansen, Y. E. Strausser, A. N. Erickson, E. J. Tarsa, P. Kozodoy, E. G. Brazel, J. P. Ibbetson, U. Mishra, V. Narayanamurti, S. P. Denbaars, and J. S. Spect, “Scanning capacitance microscopy imaging of threading dislocation in GaN films grown on (0001) sapphire by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 72, pp. 2247-2249, 1998.
[25] E.G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of localized high current densities in GaN films,” Appl. Phys. Lett., Vol. 74, pp. 2367-2369, 1999.
[26] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, “Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes,” Appl. Phys. Lett., Vol. 78, pp. 1685-1687, 2001.
[27] T. Eickhoff, V. Medicherla, and W. Drube, “Final state contribution to the Si 2p binding energy shift in SiO2/Si(1 0 0),” J. Electron Spectrosc. Relat. Phenom., Vol. 137, pp. 85-88, 2004.
[28] V. Dimitrov and T. Komatsu, “Correlation between O1S binding energy and metal binding energy in XPS spectra of oxide glasses,” Phys. Chem. Glasses-Eur. J. Glass Sci. Technol. Part B, Vol. 44 pp. 401-408, 2003.
[29] V. Adivarahan, G. Simin, J. W. Yang, A. Lunev, M. A. Khan, N. Pala, M. Shur, and R. Gaska, “SiO2-passivated lateral-geometry GaN transparent Schottky-barrier detectors,” Appl. Phys. Lett., Vol. 77, pp. 863-865, 2000.
Chapter 5
[1] E. Munoz, E. Monroy, J. L. Pau, F. Calle, F. Omnes, and P. Gibart, “III nitrides and UV detection,” J. Phys. Condens. Matter, vol. 13, pp. 7115–7137, 2001.
[2] C. L. Yu, C. H. Chen, S. J. Chang, Y. K. Su, S. C. Chen, P. C. Chang, P. C. Chen, M. H. Wu, H. C. Chen, and K. C. Su, “In0.37Ga0.63N Metal-Semiconductor-Metal Photodetectors With Recesed Electrodes,” IEEE Photon. Technol. Lett., Vol. 17, pp.875-877, 2005.
[3] F. A. Ponce and D. P. Bour, “Nitride-based semiconductors for blue and green light emitting devices,” Nature, Vol. 386, pp. 351-359, 1997.
[4] M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys., Vol. 79, pp. 7433-7473, 1996.
[5] A. P. Zhang, G. T. Dang, F. Ren, H. Cho, K. P. Lee, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, “Comparison of GaN p-i-n and Schottky rectifier performance,” IEEE Trans. Electron. Dev., Vol. 48, pp.407-411, 2001.
[6] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN,” Appl. Phys. Lett., Vol. 82, pp. 4304-4306, 2003.
[7] H. C. Casey Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and S. P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN,” Appl. Phys. Lett., Vol. 68, pp. 1850-1852, 1996.
[8] T. Hashizume, E. Alekseev, D. Pavlidis, K. S. Boutros, and J. Redwing, “Capacitance-voltage characterization of AlN/GaN metal-insulator-semiconductor structures grown on sapphire substrate by metalorganic chemical vapor deposition,” J. Appl. Phys., Vol. 88, pp. 1983-1986, 2000.
[9] S. Imanaga, F. Nakamura, and H. Kawai, “Current-voltage characteristics of AlN/GaN heterostructure metal insulator semiconductor diode,” Jpn. J. Appl. Phys., Vol. 40, pp. 1194-1198, 2001.
[10] G. C. Yi and B. W. Wessels, “Deep level defects in n-type GaN compensated with Mg,” Appl. Phys. Lett., Vol. 68, pp. 3769-3771, 1996.
[11] K. Saarinen, J.Nissila, P. Hautojarvi, J. Likonen, T. Suski, I. Grzegory, B. Lucznik, and S. Porowski, “The influence of Mg doping on the formation of Ga vacancies and negative ions in GaN bulk crystals,” Appl. Phys. Lett., Vol. 75, pp. 2441-2443, 1999.
[12] S. Nakamura and G. Fasol, The Blue Laser Diode, 1st ed. Berlin, Germany: Springer-Verlag, 1997.
[13] T. D. Moustakas, “Epitaxial growth of GaN films produced by ECR-assisted MBE,” Mater. Res. Soc. Symp. Proc., Vol. 395, pp. 111, 1996.
[14] S. S. Ng, Z. Hassan, and H. A. Hassan, “Optical characteristics of GaN epilayer grown on silicon substrate by Raman and PL spectroscopy,” J. Solid State Science and Technology Letters (Suppl.) Vol. 12, pp.75, 2005.
[15] H. Jiang, N. Nakata, G. Y. Zhao, H. Ishikawa, C. L. Shao, T. Egawa, T. Jimbo, and M. Umeno, “Back-illuminated GaN metal-semiconductor-metal UV photodetector with high internal gain,” Jpn. J. Appl. Phys., Vol. 40, pp. L505-L507, 2001.
[16] M. Klingenstein, J. Kuhl, J. Rosenzweig, C. Moglestue, A. Hulsmann, J. Schneider, and K. Kohler, “Photocurrent gain mechanisms in metal-semiconductor-metal photodetectors,” Solid State Electron, Vol. 37, pp. 333-340, 1994.
[17] J. H. Burroughes, “H-MESFET Compatible GaAs/AlGaAs MSM Photodetectors,” IEEE Photon. Technol. Lett., Vol. 3, pp. 660-662, 1991.
[18] B. L. Sharma, Metal-Semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York, 1984.
Chapter 6
[1] D. Gu, S. K. Dey, and P. Majhi, “Effective work function of Pt, Pd, and Re on atomic layer deposited HfO2,” Appl. Phys. Lett., Vol. 89, pp. 082907, 2006.
[2] V. Mikhelashvili, G. Eisenstein, P. Thangadurai, W. D. Kaplan, R. Brener, and C. Saguy, “The use of nanolaminates to obtain structurally stable high-K films with superior electrical properties: HfNO-HfTiO,” J. Appl. Phys., Vol. 103, pp.114106, 2008.
[3] S. Abermann1, G. Pozzovivo, J. Kuzmik, G. Strasser, D. Pogany, J. F. Carlin, N. Grandjean, and E. Bertagnolli, “ MOCVD of HfO2 and ZrO2 high-k gate dielectrics for InAlN/AlN/GaN MOS-HEMTs,” Semicond. Sci. Technol., Vol. 22, pp. 1272-1275, 2007.