簡易檢索 / 詳目顯示

研究生: 王派天
Wang, Pai-Tyan
論文名稱: 以有機金屬氣相沉積方法成長表面粗化之高效率及改善抗靜電特性之氮化鎵發光二極體
High-efficiency and Improved ESD Characteristics of GaN-based LEDs with Naturally Textured Surface Grown by MOCVD
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 123
中文關鍵詞: 氮化鎵發光二極體高效率及改善抗靜電特性
外文關鍵詞: GaN-based LED, High-efficiency and Improved ESD Characteristics
相關次數: 點閱:93下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對利用有機金屬氣相沉積方法之技術,針對氮化鎵藍綠光InGaN/GaN外層量子井成長及特性作研究。為了提昇LED亮度,並且得到更多的 light extraction efficiency,我們成長LED表面為specular, V-shaped pits , bump islands 形態並加以分析。 V-shaped pits 形態之LED能得到較好之light extraction efficiency。 不過,這些表面狀態形成取決於成長時之氣氛條件包括溫度、成長速率以及反應腔體之環境。 我們發現改變“Mg treatment “層成長之溫度將改變LED的表面”island”形狀,並且最較之成長溫度是在900 ℃±10 ℃左右。我們也發現當HTG p-GaN接觸層成長超過2000 Ǻ時,能有效地在human body mode狀態下,耐受負的靜電(ESD)電壓直到7000 V。 實驗結果顯示GaN LED於表面成長類似金字塔斜面可提升輸出功率約66%。而提昇的原因認為是表面粗化的有助於光子路徑的縮短而使得light extraction增加。於GaN LED插入HTG p-GaN層時, 可以較一般V-shaped表面粗化之GaN LED在整體結構上能有效地壓抑有關pits所產生的TDs, 而且因此得到更好的ESD 特性。氮化物綠光LEDs透過增加GaN barrier layer的成長溫度從700到950 ℃,我們能降低20 mA 正向電壓和增加光輸出強度。在此條件下發現最大的輸出功率是2.2 mW 和8.9 mW。如此觀察可能為GaN barrier layer結晶品質改善的結果。而且這些LEDs的可靠度測試結果是好的且可信賴的。

    In this thesis, the growth and characterization of blue and green InGaN/GaN multiple quantum well light emitting diodes have been studied by metalorganic chemical vapor phase deposition (MOCVD) technique. In order to improve the luminous intensity and get more light extraction efficiency, we also growth of LEDs with specular, V-shaped pits , bump islands on surface and analyzed. The LEDs with dense V-shape pits can effective enhance light extraction efficiency. However, the morphology is strongly dependent on the froth conditions including temperature, growth rate and reactor ambient. We found that changing the process temperature of “Mg treatment “ layer will change the surface morphology of LEDs with bump islands , and the adequate growth temperatures were around 900 ±10 . ℃℃We also found that the flat LED the p-GaN contact layer thickness over 2000 Ǻ could effectively endure negative electrostatic discharge (ESD) voltage up to 7000V at the human body mode. Experimental results indicated that GaN-based LED with truncated pyramids on the surface exhibit an enhancement in output power of 66 %. This enhancement can be attributed to that a rough LED surface could result in a reduction of photon path length for light extraction. The GaN-based LEDs with the HTG p-GaN insertion layer could effectively suppress the pits-related TDs to intersect the whole layer structure and thereby leads to the better ESD characteristics compared with those of conventional GaN-based LEDs with V-shape textured surface. We could reduce the 20 mA forward voltage and increase the output intensity of the nitride-based green LEDs by increasing the growth temperature of GaN barrier layers from 700 ℃ to 950 ℃. The 20 mA output power and maximum output power of the nitride-based green LEDs with high temperature GaN barrier layers was found to be 2.2 mW and 8.9 mW. Such an observation could be attributed to the improved crystal quality of GaN barrier layers. The reliability of these LEDs was also found to be reasonably good.

    CHAPTER 1 Introduction 1.1 The background of research on III-V Nitrides………………… 1-1 CHAPTER 2 Nitride-Based LED Growth by Metalorganic Chemical Vapor Deposition System 2.1 Introduction ……………………………………………………………… 2-1 2.2 III-V Nitride MOCVD Reactor…………………………………………… 2-4 2.3 Epitaxial Growth by In-Situ Reflectance Monitor …………………2-6 CHAPTER 3 Different Surface Morphology Growth by Metalorganic Chemical Vapor Deposition System 3.1 Growth of LEDs with specular surface ……………………… 3-1 3.2 Gorwth of LEDs with V-shaped pits on surface …………… 3-2 3.3 Growth of LEDs with bump islands on surface ………………… 3-6 CHAPTER 4 High-efficiency and Improved ESD Characteristics of GaN-based LEDs with Naturally Textured Surface 4.1 Improved ESD Characteristics of Flat Light Emitting Diodesstructure………………………………………………………………… 4-1 4.2 Characterization of LEDs with bump islands on surface ………… 4-3 4.3 ESD characteristics of EDs with V-shaped pits on p-GaN surfaceimproved by inserting a high-temperature-grown layer between the p-AlGaN layer and the low-temperature-grown p-GaN contact layer…………………………………… 4-7 4.4 High Output Intensity of Power Chips Multi -Quantum Well Blue and Green Light Emitting Diodes ………………………………………………………… 4-12 CHAPTER 5 Conclusion ………………………………………………………………………… 5-1

    1.Y.-F. Wu, B.P. Keller, D. Kapolnek, P. Kozodoy, S.P. Denbaars, and U.K. Mishra, Appl. Phys. Lett. 69, 1438 (1996).
    2.S. Guha, J.M. DePuydt, J. Qiu, G.E. Hofler, M.A. Haase, B.J. Wu, and H. Cheng, Appl. Phys. Lett. 63, 3023 (1993)
    3.S. Guha, J.M. Depuydt, M.A. Haase, J. Qiu, and H. Cheng, Appl. Phys. Lett. 63, 3300 (1993).
    4.Y. Matsushita, T. Uetani, T. Kunisato, J. Suzuki, Y. Ueda, K. Yagi, T. Yamaguchi, T. Niina, Jpn. J. Appl. Phys. Part 1 34, 1833 (1995).
    5.J.D. Brown, J.T. Swindell, M.A.L. Johnson, Yu Zhonghai, J.F. Schetzina, G.E. Bulman, K. Doverspike, S.T. Sheppard, T.W. Weeks, M. Leonard, H.S. Kong, H. Dieringer, C. Carter, J.A. Edmond, Nitride Semiconduct or Symposium, Mat. Res. Soc., p. 1179-84 (1998).
    6.S. Nakamura, M. Senoh, N. Iwasa, and S.-I.Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
    7.S. Nakamura, J. Cryst. Growth 170, 11 (1997).
    8.Z.A. Munir, and A.W. Searcy, J. Chem. Phys. 42, 4233 (1965).
    9.N. Newman, J. Ross, and M. Rubin, Appl. Phys. Lett. 62, 1242 (1993).
    10.S. Nakamura, M. Senoh, and T. Mukai, Appl. Phys. Lett. 62, 2390 (1993).
    11.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys. 28, L21 (1989).
    12.S.D. Lester, F.A. Ponce, M.G. Craford, and D.A. Steigerwald, Appl. Phys. Lett. 66, 1249 (1996).
    13.I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N Sawaki, J. Cryst. Growth 98, 209 (1989).
    14.D.L. Barton, M. Osinski, C.J. Helms, N.H. Berg, B.S. Phillips, SPIE-Int. Soc. Opt. Eng 2694, 64 (1996).
    15.A.T. Ping, Q. Chen, J.W. Yang, M.A. Khan, I. Adesida, IEEE Electron DeviceLetters 19, 54 (1998).
    16.I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth., 89, 209(1989).
    17.S. Nakamura, Jpn. J. Appl. Phys., 30, L1705 (1991 ).
    18.T. W. Weeks, Jr., M. D. Bremser, K. S. Ailey, E. Carlson and co-workers, Appl. Phys. Lett., 67, 401(1995).
    19.H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, Jpn. J. Appl. Phys., 28, L2112(1989).
    20.S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, Jpn. J. Appl. Phys., 31, L139 (1992 ).
    21.S. Nakamura, N. Iwasa, Senoh, and T. Mukai,M, Jpn. J. Appl. Phys., 31, 1258 (1992 ).
    22.A. Koukitu, N. Tkahashi, T. T. Taki and H. Seki, Jpn. J. Appl. Phys., 35, L673 (1996 ).
    23.M. Shimizu, K. Hiramatsu and N. Sawaki, J. Cryst. Growth., 145, 209( 1994).
    24.E. L. Piner, M. K. Behbehani, N. A. Ei-Masry, F. G. McIntosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, Appl. Phys. Lett., 70, 461(1997).
    25.M. E. Lin, Z. Ma, Y. F. Huang, Z. F. Fan, L. H. Allen, and H. Morkoc, Appl. Phys. Lett. 64, 1003 (1994).
    26.Z. F Fan, S. N. Mmohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H.Morkoc, Appl. Phys. Lett. 68, 1672 (1996).
    27.J. D .Guo, C. I. Lin, M. S. Feng, F. M. Pan, G. C. Chi, and C. T. Lee., Appl. Phys. Lett. 68, 235 (1996).
    28.T. Kim, M. C. Yoo, and T. Kim, Mat. Res. Soc. Symp. Proc. Vol 449, 1061 (1997).
    29.T. Mori, T. Kozawa, T. Ohwaki, Y. Taga, S.Nagai, S. Yamasaki, S. Asami, N. Shibata, and M. Koike., Appl. Phys. Lett. 69, 3537 (1996).
    30.S. Nakamura, T. Mokia and M. Senoh, Appl. Phys. Lett., 64,1689(1994).
    31.J. I. Pankove, J. Electrochem. Soc., 119,1118(1972).
    32.I. Akasaki, H. Amano, H. Murakami, H. Kato, M. Sassa, and K. Manabe, J. Cryst. Growth., 128, 379( 1993).
    33.M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, Appl. Phys. Lett., 66,1083(1995).
    34.S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T.Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys., 35, 74(1996).
    C. P. Kuo, R. M. Fletcher, T.D. Osentowski, M. C. Lardizabal, M. G. Craford, and V. M. Robbins, Appl. Phys. Lett., 57, 2937(1990).

    1.S. Nakamura, T. Muksi, and M. Senoh, “Candela-class high-brightness InGaN/GaN double-heterostructure Blue Light-emitting-diodes”, Appl. Phys. Lett. 64, 1687 (1994).
    2.H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett., “The preparation and properties of vapour-deposited single- crystal-line GaN”, 15, 367 (1969).
    3.H. M. Manasevit, F. Erdmann and W. Simpson, “The use of metalorganics in the preparation of semiconductor materials. IV. The nitrides of aluminum and gallium “, J. Electrochem. Soc., Vol. 118, 1864 (1971).
    4.S. P. DenBaar, B. Y. Maa, P. D. Dapkus and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth. Vol. 77, 188 (1986).
    5.S. Nakamura, Y. Harada, M. Seno, “Novel metalorganic chemical vapor deposition system for GaN growth “, Appl. Phys. Lett., 58, 2021 (1991).
    6.H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, “The dependence of the electrical characteristics of the GaN epitaxial layer on the thermal treatment of the GaN buffer layer “, Appl. Phys. Lett., Vol. 48, 353 (1986).
    7.S. Nakamura, “ GaN growth using GaN buffer layer”, Jpn. J. Appl. Phys., Vol. 30, L1705 (1991).
    8.X. H. Wu, D. Kapolnek, E. J. Tarsa, B. heying, S. Keller, B. P. Keller, U. K. Mishra, S. P. DenBaars and J. S. Speck, “Nucleation layer evolution in metal-organic chemical vapor deposition grown GaN”, Appl. Phys. Lett., 68, 1371 (1996).
    9.S. Nakamura, Jpn. J. Appl. Phys., 30, 1348 (1991).
    10.H. Amano, I. Akasak, K. Hiramatsu and N. Koide, “Effects of the buffer layer in metalorganic vapour phase epitaxy of GaN on sapphire substrate”, Thin Solid Film, 163, 415 (1988).
    11.W. G. Breiland and K. P. Killeen, “A Virtual interface method for extracting growth-rates and high-temperature optical-constant from thin semiconductor-films using in-situ normal incidence reflectance”, J. Appl. Phys., 78 (11), 6726 (1995).
    12.W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, "Optical and electrical characteristics of CO2 laser treated Mg-doped GaN film", Jpn. J. Appl. Phys. Lett., Vol. 39, No. 11B, pp. L1138-L1140, November 2000.
    13.K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, "Photoluminescence characteristics of Mg- and Si-doped GaN thin films grown by MOCVD technique", J. Crystal Growth, Vol. 220, pp. 405-412, December 2000.

    1.S. Nakamura, M. Senoh, Iwasa, N. and S. Nagahama, Appl. Phys. Lett. 67, 1868 (1995).
    2.S. Ruvimov, Z. Liliental-Weber. T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 990 (1996).
    3.E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, Appl. Phys. Lett, 71, 921 (1996).
    4.Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, I. C. Lin and C. H. Chen, "Transparent TiN electrodes in GaN metal-semiconductor-metal ultraviolet photodetectors", Jpn. J. Appl. Phys., Vol. 41, No. 6A, pp. 3643-3645, June 2002.
    5.J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, "White-light emission from InGaN/GaN multi-quantum well light-emitting diodes with Si and Zn codoped active layer", IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
    6.S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
    7.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, "High efficient InGaN/GaN MQW green light emitting diodes with CART and DBR structures", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288, Mar/Apr 2002.
    8.C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, "High brightness green light emitting diode with charge asymmetric resonance tunneling structure", IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-132, March 2002.
    9.C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C. Huang, C. I. Chiang, J. Webb and W. J. Lin, "On the carrier concentration and Hall mobility in GaN epitaxial layers", Jpn. J. Appl. Phys. Lett., Vol. 41, No. 3A, pp. L226-L228, March 2002.
    10.J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, "n+-GaN formed by Si implantation into p-GaN", J. Appl. Phys., Vol. 91, No. 4, pp. 1845-1848, February 2002.
    11.C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, "Low temperature activation of Mg-doped GaN in O2 ambient", Jpn. J. Appl. Phys. Lett., Vol. 41, No. 2A, pp. L112-L114, February 2002.
    12.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts", IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, August 2001.
    13.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, "InGaN/AlInGaN light emitting diodes", IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
    14.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, "GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2996-2999, April 2001.
    15.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, "Vertical high quality mirror-like facet of GaN-based devices by reactive ion etching", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2762-2764, April 2001.
    16.S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, "Microwave treatment to activate Mg in GaN", Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313, January 2001.
    17.K. S. Ramaiah, Y. K. Su, S. J. Chang, F. S. Juang and C. H. Chen, "Photoluminescence characteristics of Mg- and Si-doped GaN thin films grown by MOCVD technique", J. Crystal Growth, Vol. 220, pp. 405-412, December 2000.
    18.W. C. Lai, M. Yokoyama, S. J. Chang, J. D. Guo, C. H. Sheu, T. Y. Chen, W. C. Tsai, J. S. Tsang, S. H. Chang and S. M. Sze, "Optical and electrical characteristics of CO2 laser treated Mg-doped GaN film", Jpn. J. Appl. Phys. Lett., Vol. 39, No. 11B, pp. L1138-L1140, November 2000.
    19.L.W. Wu, S.J. Chang, Y.K. Su, R.W. Chuang, Y.P. Hsu, C.H. Kuo, W.C. Lai, T.C. Wen, J.M. Tsai, J.K. Sheu” In0:23Ga0:77N/GaN MQW LEDs with a low temperatureGaN cap layer” Solid State Electron., Vol. 47, pp.2027-2030,2003 and references therein.
    20..S.Chang,S.J.Chang,Y.K.Su,C.H.Kuo,W.C.Lai,Y.C.Lin,Y.P.Hsu,S.C.Shei,J.M.Tsai,H.M.Lo,J.C.Ke,and J.K.Sheu”High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE, Electron Devices, Vol.50,No.11,pp.2208-2212,2003.
    21.T.C. Wen, S.J. Chang, Y.K. Su, L.W. Wu, C.H. Kuo, W.C. Lai, J.K. Sheu, and T.Y. Tsai “InGaN/GaN Multiple Quantum Well Green Light-Emitting Diodes Prepared by Temperature Ramping”, Journal Electronic Materials, vol.32, pp.419-421, 2003
    22.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi,” Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.23Ga0.77N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Letters, Vol.22, pp. 460-462, 2001.
    23.P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lamber, and R. D. Dupuis, Appl. Phys. Letts. 71, 1537 (1997).
    24.S. Keller, A. C. Abare, M. S. Misky, X.H. Wu, M. P. Mack, J. S. Speck, E. Hu, L. A. Coldren, U. K. Mishra, and S. P. BenBaars, Mater, Sci. Forum 264-168, 1157 (1998).
    25.S. Bindnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J.Song, S. Keller, U. K. Mishra, and S. P. DenBarrs, Appl Phys. Letts. 72, 1623 (1998).
    26.S. Salvador, G. Liu, W. Kim, P. Aktas, A. Botchkarev, and H. Morkoc, Appl. Phys. Lett. 67, 3322 (1995).
    27.K. C. Zeng, J. Y. Lin, H. X. Jiang, A. Salvador, G. Popovicic, H. Tang, W. Kim, H. Morkoc, Appl. Phys. Lett. 71, 1368 (1997).
    28.S. Ruvimov, Z. L. Weber, T. Suski, J. E. Ager III, J. Washbum, J. Krueger, C. Kisielowski, E. R.Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 990 (1996).
    29.T. Deguchi, A. Shikanai, K. Torii, T. Sots, S. Chichibu, S. Nakamura, Appl. Phys. Lett. 72, 3329 (1998).
    30.D. A. Meller, D. S. Chemla, T. C. Damen, A. C. Gross, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett. 53, 2173 (1981).
    31.D. A. B. Miller, D. S. Chemla and S. Schmitt-Rink, Phys. Rev. B 33, 6976 (1986).
    32.Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, Appl. Phys. Lett., 70, 981 (1997).
    33.S. Ruvimov, Z. L. Weber, T. Suski, J. E. Ager III, J. Washbum, J. Krueger, C. Kisielowski, E. R.Weber, H. Amano, and I. Akasaki, Appl. Phys. Lett. 69, 990 (1996).
    34.T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, "InGaN/GaN tunnel injection blue light emitting diodes", IEEE Tran. Electron. Dev., Vol. 49, No. 6, pp. 1093-1095, June 2002.
    35.L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, "Influence of Si-doping on the characteristics of InGaN/GaN multiple quantum well blue light emitting diodes", IEEE J. Quantum. Electron., Vol. 38, No. 5, pp. 446-450, May 2002.
    36.C. H. Kuo, S. J. Chang, Y K. Su, J. F. Chen, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, "InGaN/GaN light emitting diodes activated in O2 ambient", IEEE Electron. Dev. Lett., Vol. 23, No. 5, pp. 240-242, May 2002.
    37.C. H. Ko, Y K. Su, S. J. Chang, T. M. Kuan, C. I. Chiang, W. H. Lan, W. J. Lin and J. Webb, "A p-down InGaN/GaN MQW LED structure grown by MOVPE", Jpn. J. Appl. Phys., Vol. 41, No. 4B, pp. 2489-2492, April 2002.
    38.P. Kozodoy, M. Hansen, S. P. DenBaars and U. K. Mishra, "Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices", Appl. Phys. Lett., Vol. 74, No. 24, pp. 3678- 3680, 1999.
    39.I. D. Goepfert, E. F. Schubert, A. Osinsky, P. E. Norris and N. N. Faleev, "Experimental and theoretical study of acceptor activation and transport properties in p-type AlxGa1-xN/GaN superlattices", J. Appl. Phys,, Vol. 88, No. 4, pp. 2030-2038, 2000.
    40.I. D. Goepfert, E. F. Schubert, A. Osinsky and P. E. Norris, "Demonstration of efficient p-type doping in AlxGa1-xN/GaN superlattice structures", Electron. Lett., Vol. 35, No. 13, pp. 1109-1111, 1999.
    41.K. Kumakura and N. Kobayashi, "Increased electrical activity of Mg-acceptors in AlxGa1-xN/GaN superlattices", Jpn. J. Appl. Phys., Vol. 38, No, 9A/B, pp. L1012-L1014, November 1999.
    42.K. Kumakura, T. Makimoto and N. Kobayashi, "Enhanced hole generation in Mg-Doped AlGaN/GaN superlattices due to piezoelectric field", Jpn. J. Appl. Phys. Vol. 39, No, No. 4B, pp. ) 2428-2430, April 2000.
    43.J. K. Sheu, G. C. Chi, and M. J. Jou, "Low-operation voltage of InGaN/GaN light-emitting diodes by using a Mg-doped Al0.15Ga0.85N/GaN superlattice", IEEE Electron Device Lett., Vol. 22, pp.160-162, 2001.
    44.A. Kinoshita, H. Hirayama, M. Ainoya, Y. Aoyagi and A. Hirata, "Room-temperature operation at 333 nm of Al0.03Ga0.97N/Al0.25Ga0.75N quantum-well light-emitting diodes with Mg-doped superlattice layers", Appl. Phys. Lett, Vol. 77, pp. 175-177, 2000.
    45.S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Matsushita and T. Mukai, "Blue InGaN-based laser diodes with an emission wavelength of 450nm", Appl. Phys.Lett., vol.76, pp.24-22, 1999.
    46.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, "Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer", IEEE Electron. Dev. Lett., Vol. 22, No. 10, pp. 460-462, October 2001.
    47.Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, I. C. Lin and C. H. Chen, "Transparent TiN electrodes in GaN metal-semiconductor-metal ultraviolet photodetectors", Jpn. J. Appl. Phys., Vol. 41, No. 6A, pp. 3643-3645, June 2002.
    48.J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, "White-light emission from InGaN/GaN multi-quantum well light-emitting diodes with Si and Zn codoped active layer", IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
    49.S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
    50.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, "High efficient InGaN/GaN MQW green light emitting diodes with CART and DBR structures", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288, Mar/Apr 2002.
    51.C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, "High brightness green light emitting diode with charge asymmetric resonance tunneling structure", IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-132, March 2002.
    52.C. H. Ko, S. J. Chang, Y. K. Su, W. H. Lan, J. F. Chen, T. M. Kuan, Y. C. Huang, C. I. Chiang, J. Webb and W. J. Lin, "On the carrier concentration and Hall mobility in GaN epitaxial layers", Jpn. J. Appl. Phys. Lett., Vol. 41, No. 3A, pp. L226-L228, March 2002.
    53.J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang and Y. K. Su, "n+-GaN formed by Si implantation into p-GaN", J. Appl. Phys., Vol. 91, No. 4, pp. 1845-1848, February 2002.
    54.C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, J. K. Sheu, C. H. Chen and G. C. Chi, "Low temperature activation of Mg-doped GaN in O2 ambient", Jpn. J. Appl. Phys. Lett., Vol. 41, No. 2A, pp. L112-L114, February 2002.
    55.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. Y. Chi, C. A. Chang, J. K. Sheu and J. F. Chen, "GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts", IEEE Photon. Technol. Lett., Vol. 13, No. 8, pp. 848-850, August 2001.
    56.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, "InGaN/AlInGaN light emitting diodes", IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
    57.Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, "GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2996-2999, April 2001.
    58.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and I. C. Lin, "Vertical high quality mirror-like facet of GaN-based devices by reactive ion etching", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2762-2764, April 2001.
    59.S. J. Chang, Y. K. Su, T. L. Tsai, C. Y. Chang, C. L. Chiang, C. S. Chang, T. P. Chen and K. H. Huang, "Microwave treatment to activate Mg in GaN", Appl. Phys. Lett., Vol. 78, No. 3, pp. 312-313, January 2001.

    1.S. Nakamura and G. Fasol, The Bule Laser Diode (Springer, Berlin, 1997).
    2.S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama, “High brightness InGaN blue, green and yellow light-emitting-diodes with quantum well structure”, Jpn. J. Appl. Phys., Part2,Vol. 34, pp. L797-800 1995.
    3.L. H. Ho and G. B. Stringfellow, “Solid phase immiscibility in GaInN”, Appl. Phys. Lett., Vol. 69, pp. 2701-2703 1996.
    4.E. F. Schubert, “Light Emitting Diodes “ Cambridge University Press, pp.185,2003.
    5.R.J. Shul, L. Zhang, A.G. Baca, C.G. Willison, J. Han, S.J. Pearton, F. Ren, J.C. Zolper and L.F. Lester, “High Density Plasma-Induced Etch Damage in GaN,” Mat. Res. Soc. Symp. Proc. Vol. 573, pp.271-276,1999.
    6.C.S.Chang,S.J.Chang,Y.K.Su,C.H.Kuo,W.C.Lai,Y.C.Lin,Y.P.Hsu,S.C.Shei,J.M.Tsai,H.M.Lo,J.C.Ke,and J.K.Sheu”High brightness InGaN green LEDs with an ITO on n++-SPS upper contact”, IEEE, Electron Devices, Vol.50,No.11,pp.2208-2212,2003.
    7.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi,” Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.23Ga0.77N/GaN short-period superlattice tunneling contact layer”, IEEE Electron Device Letters, Vol.22, pp. 460-462, 2001.
    8.L.W. Wu, S.J. Chang, Y.K. Su, R.W. Chuang, Y.P. Hsu, C.H. Kuo, W.C. Lai, T.C. Wen, J.M. Tsai, J.K. Sheu” In0:23Ga0:77N/GaN MQW LEDs with a low temperatureGaN cap layer” Solid State Electron., Vol. 47, pp.2027-2030,2003 and references therein.
    9.I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, ” 30% external quantum efficiency from surface textured, thin-film light-emitting diodes”, Appl. Phys. Lett., Vol.63, pp.2174-2176,1993.
    10.R. Windisch, P. Heremans, A. Knobloch, P. Kiesel, G. H. Do¨ hle, B. Dutta and G. Borghs” Light-emitting diodes with 31% external quantum efficiency by outcoupling of lateral waveguide modes” Appl. Phys. Lett., Vol.74, pp.2256-2258,1999.
    11.X. Guo, J. W. Graff and E. F. Schubert, “Photon-recycling Semiconductor Light-emitting Diodes”, IEDM Technology Digest, IEDM-99, pp.600-605, 1999.
    12.J. I. Pankove, “Optical Processes in Semiconductors”, (Prentice-Hall, New JERSEY, 1971 ) PP. 147-152.
    13.M. Shimizu, K. Hiramatsu and N. Sawaki, “Metalorganic vapor phase epitaxy growth of InxGa1-xN/GaN layered structures and reduction of indium droplets”, J. Cryst. Growth, Vol. 145, pp. 209-214, 1994.
    14.S. Keller, B. Keller, D. Kapolnek, U. Mishra, S. DenBaars, I. Shmagin, R. Kolbas and S. Krishnankutty, “Growth of bulk InGaN films and quantum wells by atmospheric pressure metalorganic chemical vapour deposition“, J. Cryst. Growth, Vol. 170, pp. 349-354 1997.
    15.T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, "InGaN/GaN tunnel injection blue light emitting diodes", IEEE Tran. Electron. Dev., Vol. 49, No. 6, pp. 1093-1095, June 2002.
    16.L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen and J. K. Sheu, "Influence of Si-doping on the characteristics of InGaN/GaN multiple quantum well blue light emitting diodes", IEEE J. Quantum. Electron., Vol. 38, No. 5, pp. 446-450, May 2002.
    17.J. K. Sheu, C. J. Pan, G. C. Chi, C. H. Kuo, L. W. Wu, C. H. Chen, S. J. Chang and Y. K. Su, "White-light emission from InGaN/GaN multi-quantum well light emitting diodes with Si and Zn codoped active layer", IEEE Photon. Technol. Lett., Vol. 14, No. 4, pp. 450-452, April 2002.
    18.S. J. Chang, W. C. Lai, Y. K. Su, J. F. Chen, C. H. Liu and U. H. Liaw, "InGaN/GaN multiquantum well blue and green light emitting diodes", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 278-283, Mar/Apr 2002.
    19.C. H. Chen, S. J. Chang, Y. K. Su, G. C. Chi, J. K. Sheu and J. F. Chen, "High efficient InGaN/GaN MQW green light emitting diodes with CART and DBR structures", IEEE J. Selected topics in Quan. Electron., Vol. 8, No. 2, pp. 284-288, Mar/Apr 2002.
    20.C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, "High brightness green light emitting diode with charge asymmetric resonance tunneling structure", IEEE Electron. Dev. Lett., Vol. 23, No. 3, pp. 130-132, March 2002.
    21.W. C. Lai, S. J. Chang, M. Yokoyama, J. K. Sheu and J. F. Chen, "InGaN/AlInGaN light emitting diodes", IEEE Photon. Technol. Lett., Vol. 13, No. 6, pp. 559-561, June 2001.
    22.S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, J. K. Sheu, T. C. Wen, W. C. Lai, J. F. Chen and J. M. Tsai, "400nm InGaN/GaN and InGaN/AlGaN multiquantum well light-emitting diodes", IEEE J. Sel. Top. Quan. Electron., Vol. 8, No. 4, pp. 744-748, July/August 2002
    23.C. H. Chen, S. J. Chang, Y. K. Su, J. K. Sheu, J. F. Chen, C. H. Kuo and Y. C. Lin, "Nitride-based cascade near white light emitting diodes", IEEE Photo. Technol. Lett., Vol. 14, No. 7, pp. 908-910, July 2002.
    24.J. K. Sheu, J. M. Tsai, S. C. Shei, W. C. Lai, T. C. Wen, C. H. Kou, Y. K. Su, S. J. Chang and G. C. Chi, "Low-operation voltage of InGaN/GaN light-emitting diodes with Si-doped In0.3Ga0.7N/GaN short-period superlattice tunneling contact layer", IEEE Electron. Dev. Lett., Vol. 22, No. 10, pp. 460-462, October 2001
    25.T. C. Wen and W. I. Lee, “Influence of barrier growth temperature on the properties of InGaN/GaN quantum well”, Jpn. J. Appl. Phys., Vol. 40, pp. 5302-5303 2001.
    26.T. C. Wen, S. C. Lee and W. I. Lee, ”Influence of barrier growth temperature on the properties of InGaN/GaN quantum wells”, Proc. SPIE, Vol. 4278, pp. 141-144, 2001
    27.M. Sugawara, Self-Assembled InGaAs/GaAs Quantum Dots (Academic Press 1999).
    28.Wierer JJ, Steigerwald DA, Krames MR, O’Shea JJ, Ludowise MJ, Christenson G, et al. High-power AlGaInN flip-chip light-emitting diodes. Appl Phys Lett 2001; 78: 3379–82.
    29.Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S. Fujita and S. Nakamura, “Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm”, Appl. Phys. Lett., Vol. 70, pp. 981-983, 1997.

    下載圖示 校內:2008-07-21公開
    校外:2009-07-21公開
    QR CODE