簡易檢索 / 詳目顯示

研究生: 羅允辰
Lo, Yun-Chen
論文名稱: 使用矽烷偶聯劑接枝二氧化矽與奈米纖維素結晶增強PMMA複合材料薄膜之開發
Development of PMMA Composite Film Enhanced by Grifting Silica and Cellulose Nanocrystals Using Silane Coupling Agent
指導教授: 施士塵
Shi, Shih-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 67
中文關鍵詞: 複合材料偶聯劑濕磨耗電化學
外文關鍵詞: composite materials, coupling agent, wet wear, electrochemical
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦六鋁四釩做為現今主流的人工關節材料,仍舊有長時間使用會有有害離子釋出的問題,因此本文志在開發一種耐磨耗、抗腐蝕的金屬保護塗層。透過矽烷偶聯劑接枝聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA)、二氧化矽與奈米結晶纖維素(cellulose nanocrystals, CNCs),並且藉由矽烷化解決填料相容性的問題,開發出兼具硬度、耐磨性、抗腐蝕性的複合材料金屬保護塗層。在機械性質測試中複合材料薄膜相較於純PMMA硬度提升最大達19.88%;磨耗率下降最多達99.57%;摩擦係數下降最多達65.61%。磨耗試驗中PMMA接枝二氧化矽提升了分子鏈的長度與複雜度;而CNCs填料被磨除後被作為潤滑劑添加劑,提升潤滑劑效能。腐蝕性質測試中,複合材料薄膜相較於純PMMA腐蝕電流密度降低最多達78.93%,等效阻抗提升最多達20.77倍。二氧化矽填料與底材形成鈍化層,降低腐蝕反應發生機率;而CNCs能夠吸附帶負電的腐蝕粒子阻止腐蝕反應發生。

    Ti-6Al-4V is currently the mainstream material for artificial joints. However, it still faces the issue of harmful ion release after prolonged use. Therefore, this study aims to develop a metal protective coating that is wear-resistant and corrosion-resistant. By grafting polymethylmethacrylate (PMMA) with a silane coupling agent, combining it with silica and cellulose nanocrystals (CNCs), and addressing filler compatibility issues through silanization, a composite material metal protective coating with hardness, wear resistance, and corrosion resistance was developed.

    In mechanical property testing, the composite material film showed a maximum hardness increase of up to 19.88% compared to pure PMMA, a maximum wear rate reduction of up to 99.57%, and a maximum friction coefficient reduction of up to 65.61%. During wear testing, PMMA grafted with silica increased the length and complexity of the polymer chains, while CNCs, when worn away, acted as lubricating additives, enhancing lubrication efficiency.

    In corrosion property testing, the composite material film exhibited a maximum reduction in corrosion current density of up to 78.93% compared to pure PMMA, and the equivalent impedance increased by up to 20.77 times. Silica fillers formed a passivation layer with the substrate, reducing the likelihood of corrosion reactions, while CNCs could adsorb negatively charged corrosion particles, preventing corrosion reactions.

    摘要 I Extended Abstract II 致謝 XI 總目錄 XII 圖目錄 XVI 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 1.3 文獻回顧 4 1.3.1 鈦六鋁四釩(Ti-6Al-4V) 4 1.3.2 聚甲基丙烯酸甲酯(polymethylmethacrylate, PMMA) 4 1.3.3 奈米結晶纖維素(cellulose nanocrystals, CNCs) 8 1.3.3.1 CNCs作為增強填料 9 1.3.4 奈米顆粒填料 11 1.3.5 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy) 12 1.3.6 雜化複合材料增強 12 1.3.7 動電位極化曲線 13 1.3.8 電化學阻抗頻譜法(EIS) 15 1.4 論文架構 16 第二章 應用理論 17 2.1 溶膠-凝膠法(Sol–Gel Process) 17 2.1.1 烷偶聯化接枝 17 2.1.2 使用XPS進行接枝檢測 17 2.2 奈米填料增強機制 19 2.3 潤滑理論 20 2.3.1 二氧化矽填料增強耐磨性 21 2.3.2 CNCs填料潤滑機制 22 2.4 腐蝕與電化學 23 2.4.1 二氧化矽填料抗腐蝕機制 23 2.4.2 CNCs抗腐蝕機制 24 第三章 實驗方法 25 3.1 材料 25 3.2 材料截面分析 27 3.3 材料的接枝檢測 27 3.4 機械性質 30 3.4.1 硬度 30 3.4.2 磨耗測試 30 3.4.2.1 熱穩定性 32 3.4.2.2 模擬體液黏度測試 32 3.5 電化學 32 3.5.1 動電位極化曲線 33 3.5.2 電化學阻抗頻譜 33 第四章 結果與討論 34 4.1 材料截面分析 34 4.2 材料的接枝檢測 37 4.3 機械性質 40 4.3.1 硬度 40 4.3.2 磨耗試驗 43 4.3.2.1 熱重曲線分析 46 4.3.2.2 模擬體液黏度 50 4.4 電化學 53 4.4.1 動電位極化曲線 53 4.4.2 電化學阻抗頻譜 55 第五章 總結 59 5.1 結論 59 5.2 未來展望 61 第六章 參考文獻 63

    1. Liang, H., et al., Applications of plasma coatings in artificial joints: an overview. Vacuum, 2004. 73(3-4): p. 317-326.
    2. Cui, W., et al., Structural and tribological characteristics of ultra-low-wear polyethylene as artificial joint materials. Journal of the Mechanical Behavior of Biomedical Materials, 2020. 104: p. 103629.
    3. Sagbas, B., et al., Measurement and theoretical determination of frictional temperature rise between sliding surfaces of artificial hip joints. Measurement, 2014. 51: p. 411-419.
    4. Sumita, M., T. Hanawa, and S. Teoh, Development of nitrogen-containing nickel-free austenitic stainless steels for metallic biomaterials. Materials Science and Engineering: C, 2004. 24(6-8): p. 753-760.
    5. Fauchais, P., Understanding plasma spraying. Journal of Physics D: Applied Physics, 2004. 37(9): p. R86.
    6. Mansfeld, F., Use of electrochemical impedance spectroscopy for the study of corrosion protection by polymer coatings. Journal of applied electrochemistry, 1995. 25(3): p. 187-202.
    7. Clyne, T.W. and D. Hull, An introduction to composite materials. 2019: Cambridge university press.
    8. Khanna, R., et al., Fabrication of dense α-alumina layer on Ti-6Al-4V alloy hybrid for bearing surfaces of artificial hip joint. Materials Science and Engineering: C, 2016. 69: p. 1229-1239.
    9. Budzynski, P., A. Youssef, and J. Sielanko, Surface modification of Ti–6Al–4V alloy by nitrogen ion implantation. Wear, 2006. 261(11-12): p. 1271-1276.
    10. Molinari, A., et al., Dry sliding wear mechanisms of the Ti6Al4V alloy. Wear, 1997. 208(1-2): p. 105-112.
    11. Mechanical Properties of Ti6Al4V.https://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MTP641.
    12. Soleymani Eil Bakhtiari, S., et al., Poly (methyl methacrylate) bone cement, its rise, growth, downfall and future. Polymer International, 2021. 70(9): p. 1182-1201.
    13. Schulz, U., P. Munzert, and N. Kaiser, Surface modification of PMMA by DC glow discharge and microwave plasma treatment for the improvement of coating adhesion. Surface and Coatings Technology, 2001. 142: p. 507-511.
    14. Giavaresi, G., et al., Preliminary investigations on a new gentamicin and vancomycin‐coated PMMA nail for the treatment of bone and intramedullary infections: an experimental study in the rabbit. Journal of Orthopaedic Research, 2008. 26(6): p. 785-792.
    15. Ridwan-Pramana, A., et al., Finite element analysis of 6 large PMMA skull reconstructions: A multi-criteria evaluation approach. PloS one, 2017. 12(6): p. e0179325.
    16. Joubert, F., et al., The preparation of graft copolymers of cellulose and cellulose derivatives using ATRP under homogeneous reaction conditions. Chemical Society Reviews, 2014. 43(20): p. 7217-7235.
    17. Trache, D., et al., Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review. International Journal of Biological Macromolecules, 2016. 93: p. 789-804.
    18. Moon, R.J., et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011. 40(7): p. 3941-3994.
    19. Habibi, Y., L.A. Lucia, and O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chemical reviews, 2010. 110(6): p. 3479-3500.
    20. Trache, D., et al., Recent progress in cellulose nanocrystals: sources and production. Nanoscale, 2017. 9(5): p. 1763-1786.
    21. Eichhorn, S.J., Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter, 2011. 7(2): p. 303-315.
    22. Domingues, R.M., M.E. Gomes, and R.L. Reis, The potential of cellulose nanocrystals in tissue engineering strategies. Biomacromolecules, 2014. 15(7): p. 2327-2346.
    23. Huang, P., et al., A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale, 2016. 8(6): p. 3753-3759.
    24. Boujemaoui, A., et al., Preparation and characterization of functionalized cellulose nanocrystals. Carbohydrate polymers, 2015. 115: p. 457-464.
    25. Ng, H.-M., et al., Extraction of cellulose nanocrystals from plant sources for application as reinforcing agent in polymers. Composites Part B: Engineering, 2015. 75: p. 176-200.
    26. Qin, X., et al., Tuning glass transition in polymer nanocomposites with functionalized cellulose nanocrystals through nanoconfinement. Nano letters, 2015. 15(10): p. 6738-6744.
    27. Sathishkumar, T., S. Satheeshkumar, and J. Naveen, Glass fiber-reinforced polymer composites–a review. Journal of reinforced plastics and composites, 2014. 33(13): p. 1258-1275.
    28. Hanemann, T. and D.V. Szabó, Polymer-nanoparticle composites: from synthesis to modern applications. Materials, 2010. 3(6): p. 3468-3517.
    29. Seah, M., The quantitative analysis of surfaces by XPS: A review. Surface and Interface Analysis, 1980. 2(6): p. 222-239.
    30. Yuan, W., et al., Use of polyimide-graft-bisphenol a diglyceryl acrylate as a reactive noncovalent dispersant of single-walled carbon nanotubes for reinforcement of cyanate ester/epoxy composite. Chemistry of Materials, 2010. 22(24): p. 6542-6554.
    31. Ramanathan, T., et al., Functionalized graphene sheets for polymer nanocomposites. Nature nanotechnology, 2008. 3(6): p. 327-331.
    32. Salavagione, H.J. and G. Martínez, Importance of covalent linkages in the preparation of effective reduced graphene oxide− poly (vinyl chloride) nanocomposites. Macromolecules, 2011. 44(8): p. 2685-2692.
    33. Hu, H., et al., Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chemical Physics Letters, 2010. 484(4-6): p. 247-253.
    34. Liu, K., et al., Preparation of polyester/reduced graphene oxide composites via in situ melt polycondensation and simultaneous thermo-reduction of graphene oxide. Journal of materials chemistry, 2011. 21(24): p. 8612-8617.
    35. Kim, H.-S., et al., The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Composites Part A: Applied Science and Manufacturing, 2007. 38(6): p. 1473-1482.
    36. Stern, M. and A.L. Geary, Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves. Journal of the electrochemical society, 1957. 104(1): p. 56.
    37. Zhang, X., et al., Effects of scan rate on the potentiodynamic polarization curve obtained to determine the Tafel slopes and corrosion current density. Corrosion science, 2009. 51(3): p. 581-587.
    38. Chang, B.-Y. and S.-M. Park, Electrochemical impedance spectroscopy. Annual Review of Analytical Chemistry, 2010. 3: p. 207-229.
    39. Orazem, M.E. and B. Tribollet, Electrochemical impedance spectroscopy. New Jersey, 2008. 1: p. 383-389.
    40. Hench, L.L. and J.K. West, The sol-gel process. Chemical reviews, 1990. 90(1): p. 33-72.
    41. Mackenzie, J.D., Applications of the sol-gel process. Journal of Non-Crystalline Solids, 1988. 100(1-3): p. 162-168.
    42. 曾信興, 填料強化聚甲基丙烯酸甲酯增韌機制和磨潤行為之研究., 國立成功大學, 2021.
    43. Morales-Acosta, M., et al., Adjustable structural, optical and dielectric characteristics in sol–gel PMMA–SiO2 hybrid films. Journal of Non-Crystalline Solids, 2013. 362: p. 124-135.
    44. Beinhoff, M., J. Frommer, and K.R. Carter, Photochemical attachment of reactive cross-linked polymer films to Si/SiO2 surfaces and subsequent polymer brush growth. Chemistry of materials, 2006. 18(15): p. 3425-3431.
    45. Bothner, H., T. Waaler, and O. Wik, Limiting viscosity number and weight average molecular weight of hyaluronate samples produced by heat degradation. International Journal of Biological Macromolecules, 1988. 10(5): p. 287-291.
    46. Lappan, U., et al., The estimation of the molecular weight of polytetrafluoroethylene based on the heat of crystallisation. A comment on Suwa's equation. Macromolecular Materials and Engineering, 2004. 289(5): p. 420-425.
    47. Bhushan, B. and P.L. Ko, Introduction to tribology. Appl. Mech. Rev., 2003. 56(1): p. B6-B7.
    48. Lee, J., et al., Silica nanoparticles as copper corrosion inhibitors. Materials Research Express, 2019. 6(8): p. 0850e3.
    49. Souza, J.C., et al., A comprehensive review on the corrosion pathways of titanium dental implants and their biological adverse effects. Metals, 2020. 10(9): p. 1272.
    50. Niederberger, M., Nonaqueous sol–gel routes to metal oxide nanoparticles. Accounts of chemical research, 2007. 40(9): p. 793-800.
    51. Arukalam, I., et al., Inhibition of mild steel corrosion in sulfuric acid medium by hydroxyethyl cellulose. Chemical Engineering Communications, 2015. 202(1): p. 112-122.
    52. Anžlovar, A., M. Huskić, and E. Žagar, Modification of nanocrystalline cellulose for application as a reinforcing nanofiller in PMMA composites. Cellulose, 2016. 23: p. 505-518.
    53. Smith, A.M., et al., Development of a synovial fluid analogue with bio-relevant rheology for wear testing of orthopaedic implants. journal of the mechanical behavior of biomedical materials, 2014. 32: p. 177-184.
    54. Bergmann, G., F. Graichen, and A. Rohlmann, Hip joint loading during walking and running, measured in two patients. Journal of biomechanics, 1993. 26(8): p. 969-990.
    55. 奇美醫療財團法人奇美醫院『陶瓷人工髖關節』產品名稱、健保支付價格及保險對象自付差額一覽表. https://www.chimei.org.tw/main/cmh_department/54120/guide/52300/data/guide04-2.pdf, 2019.
    56. Challen, J. and P. Oxley, An explanation of the different regimes of friction and wear using asperity deformation models. Wear, 1979. 53(2): p. 229-243.
    57. Gore, G. and J. Gates, Effect of hardness on three very different forms of wear. Wear, 1997. 203: p. 544-563.
    58. Zuo, Y., et al., The evaluation of coating performance by the variations of phase angles in middle and high frequency domains of EIS. Corrosion Science, 2008. 50(12): p. 3322-3328.
    59. Peres, R., et al., Influence of the addition of SiO2 nanoparticles to a hybrid coating applied on an AZ31 alloy for early corrosion protection. Surface and Coatings Technology, 2016. 303: p. 372-384.

    無法下載圖示 校內:2028-10-03公開
    校外:2028-10-03公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE