簡易檢索 / 詳目顯示

研究生: 黃裕穰
Huang, Yu-Jang
論文名稱: 奈米碳管之熱性質估測
Estimation of the Thermal Properties of Carbon Nanotubes
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 奈米碳管熱膨脹係數比熱
外文關鍵詞: carbon nanotube, thermal expansion, specific heat
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用有限元素法結合統計熱力學之關係式,可估測出單層與多層奈米碳管之熱膨脹係數及比熱性質。而研究方法之主要概念是將奈米碳管結構視為空間衍架結構,並將奈米碳管結構中的碳原子、共價鍵及凡得瓦爾力,分別利用有限元素法軟體中的質量元素、樑元素及彈簧元素來等效,並結合量子力學中用來描述原子間勢能之modified Morse potential與材料力學之樑理論,來求取等效樑元素的非線性機械性質;而凡得瓦爾力則由Lennard-Jones potential來得到其非線性彈簧勁度關係。利用這些非線性元素可以建立出更加貼近實際奈米碳管結構之有限元素分析模型,而後進行各種估測過程所需之有限元素分析,如模態分析、靜態分析等等,再結合統計熱力學中的配分函數,連結分析結果與熱力學性質之對應關係,藉此研究各種不同碳管結構的熱膨脹係數與比熱性質,並將研究結果與相關文獻相互比較,顯示本文之估測數值與現行其他理論方法所得到之數據大致吻合,並佐證本文之研究方式之可行性與準確性。

    SUMMARY
    This paper links the finite element analysis method and the statistical thermodynamic together to estimate the coefficient of thermal expansion (CTE) and specific heat (Cv) of carbon nanotubes. The structure of carbon nanotubes is looked as some kind of truss structure, and the material properties of the element of this truss structure could be find out from the constants of molecular dynamics. The computational results indicated that both of the axial and radial CTE of single wall carbon nanotubes (SWNTs) are positive and increasing with increasing temperature. The radial CTE of nanotubes will increase with increasing diameter of nanotubes. The radial CTE of double wall carbon nanotubes (DWNTs) is negative at low temperature range. And the CV of nanotubes is increasing with increasing temperature too. The effect of the nanotube chirality is slight both on CTEs and CV.
    Key words: carbon nanotube, thermal expansion, specific heat.
    INTRODUCTION
    The carbon nanotubes is well known for its good strength properties when it was be found at 1990 by Sumio Iijima. The other of properties of nanotubes such as conductivity and thermal properties are also tested at the following research. The CTE and Cv of nanotube will be very important when the nanotubes may be used as the material of integrated circuit in the future. As such, there are many papers discuss about them. Bandow, S. used the X-ray diffraction technique to measure the CTE of multi-wall carbon nanotubes (MWNTs) in the temperature range 10-320K. Maniwa et al. also used X-ray diffraction to find the radial CTE of MWNTs is in the range of "1.6-2.6×" 〖"10" 〗^"-5" " " "K" ^"-1" . There are no experimental report about the SWNTs because the difficult to get individual SWNTs and design an appropriate experiment.
    Besides experimental method to measure the CTE and Cv, numerical simulation is the another way that used by many papers. Raravikar et al. investigated the CTE of (5,5) and (10,10) SWNTs by molecular dynamics (MD) simulations. Schelling and Keblinski also use MD and lattice dynamics calculation to studies the CTE of other kinds of carbon structure, such as graphite, diamond and CNTs.
    METHODS
    The statistical thermodynamic connects the micro physical with macro thermal properties by partition function. When we assume the two carbon atoms at CNTs molecular are a pair of harmonic oscillator, we could use the vibration partition function to describe the energy between these two atoms. The unknown variables in the vibration partition function are the vibration frequency of harmonic oscillator. Therefore, as we could simulate the nature frequencies of entire equivalent CNTs truss structure, the coefficient of thermal expansion and specific heat of nanotubes could be estimated.
    We use modified Morse potential and Lennard-Jones potential to describe the covalent bond between carbon atoms and the van der Waals’ force between the layers of nanotube. Both of these two potentials nonlinearly vary with the distance between two atoms. We use the commercialized finite element method software-ANSYS to help us to simulate the nature frequencies and the deformation of CNTs under pressure. The elements chose to simulate the mass of atoms, the covalent bonds and the van der Waal’s force are Mass21, Beam188 and Combin39 separately in ANSYS. During the CNTs model building process, the real radius of CNTs is derived specially to replace the function value which will cause some deviation when calculate the radius of small CNTs and make sure that the model would like to the real CNTs as close as possible.
    RESULTS
    At this chapter, we will discuss the result of our work and compare with the others papers. Different from the common concept that the CTE of item will be a constant value, the CTE of CNTs will vary with the temperature. We find that the effect of the chirality of CNTs is slight to both of axial and radial CTE. Both of axial and radial CTE will be converge when the length of CNTs is long enough. The axial CTE is almost not change with the increasing diameter of CNTs, but the radial CTE will. This is because the structure along the axial to support the longitudinal pressure is the same. On the other hand, the ability of the CNTs to bear the radial pressure is weaker when the diameter is increasing. That leads to significant deformation of CNTs. As we know the diameter is the most effectively factor to CTE change, we test a set of MWNTs with same outside diameter but different the number of layers and find out that the radial CTE of MWNTs will decreasing with increasing layer.
    The specific heat of CNTs is also changing with the temperature. The value of specific heat is almost the same of all kind of CNTs.
    CONCLUSION
    The coefficient of thermal expansion and specific heat of many kinds of CNTs are estimated successfully by using the statistical thermodynamic. Although the absolute value has some different between other papers, the values of CTE are in the similar range. So we could sure that the method we used is work to estimate the thermal properties of carbon nanotubes. In the future, nanoscale carbon material may be used in many region depended on the special strength and thermal properties.

    目錄 目錄 I 表目錄 III 圖目錄 IV 符號 VII 第1章 緒論 1 1.1. 前言 1 1.2. 文獻回顧 1 第2章 奈米碳管結構 5 2.1. 單層奈米碳管 5 2.2. 多層奈米碳管 6 第3章 碳管熱性質估測 10 3.1. 熱膨脹係數 10 3.2. 比熱 14 第4章 有限元素模型建立 16 4.1. 非線性鍵結 16 4.1.1. 碳原子間共價鍵 16 4.1.2. 凡德瓦爾力 18 4.2. 有限元素模型 19 4.2.1. 因次調整 23 4.2.2. 元素選用 24 4.2.3. 邊界條件 26 第5章 結果與討論 28 5.1. 熱膨脹係數 28 5.1.1. 單層奈米碳管 28 5.1.2. 多層奈米碳管 30 5.2. 比熱 32 5.2.1. 單層奈米碳管 32 5.2.2. 雙層奈米碳管 33 第6章 結論與建議 34 參考文獻 35 附表 38 附圖 43

    林朝順(2009),「奈米複合材料機械性質之估測」,國立成功大學航空太空研究所碩士論文。
    徐偉盛(2008),「以分子動力學及原子力顯微鏡估測單壁奈米碳管之楊氏係數」,國立成功大學航空太空研究所碩士論文。
    劉宇揚(2007),「多壁奈米碳管力學性質之估測」,國立成功大學航空太空研究所碩士論文。
    Alamusi, Hu, N., Jia, B., Arai, M., Yan, C., Li, J. H., Li, J. H., Liu, Y. L., Atobe, S., & Fukunaga, H. (2012). Prediction of thermal expansion properties of carbon nanotubes using molecular dynamics simulations. Computational Materials Science, 54, 249-254.
    Bandow, S. (1997). Radial thermal expansion of purified multiwall carbon nanotubes measured by X-ray diffraction. Japanese Journal of Applied Physics Part 2-Letters, 36(10B), L1403-L1405.
    Belytschko, T., Xiao, S. P., Schatz, G. C., & Ruoff, R. S. (2002). Atomistic simulations of nanotube fracture. Physical Review B, 65(23), 235430.
    Benedict, L. X., Louie, S. G., & Cohen, M. L. (1996). Heat capacity of carbon nanotubes. Solid State Communications, 100(3), 177-180.
    Brenner, D. W. (1990). Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor-Deposition of Diamond Films. Physical Review B, 42(15), 9458-9471.
    Cao, J. X., Yan, X. H., & Xiao, Y. (2003). Specific heat of single-walled carbon nanotubes: A lattice dynamics study. Journal of the Physical Society of Japan, 72(9), 2256-2259.
    Chang, T. C., & Gao, H. J. (2003). Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. Journal of the Mechanics and Physics of Solids, 51(6), 1059-1074.
    Charlier, J., & Michenaud, J. (1993). Energetics of multilayered carbon tubules. Phys Rev Lett, 70(12), 1858-1861.
    Cheng, L., & Yang, J. (2007). Modified Morse potential for unification of the pair interactions. J Chem Phys, 127(12), 124104.
    Deng, L. B., Young, R. J., Kinloch, I. A., Sun, R., Zhang, G. P., Noe, L., & Monthioux, M. (2014). Coefficient of thermal expansion of carbon nanotubes measured by Raman spectroscopy. Applied Physics Letters, 104(5), 051907.
    Értekezés, D. (2005). Többfalú Szén Nanocsövek Katalitikus Előállítása És A Képződési Mechanizmus Vizsgálata.
    Randall, F. (2007) Epitaxial Graphene on Silicon Carbide. Retrieved from the Web
    April 10, 2014. http://www.andrew.cmu.edu/user/feenstra/graphene/
    Ge, M., & Sattler, K. (1993). Vapor-Condensation Generation and STM Analysis of Fullerene Tubes. Science, 260(5107), 515-518.
    Hone, J. (2000). Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science, 289(5485), 1730-1733.
    Iijima, S. (1991). Helical Microtubules of Graphitic Carbon. Nature, 354(6348), 56-58.
    Jiang, H., Huang, Y., & Hwang, K. C. (2005). A finite-temperature continuum theory based on interatomic potentials. Journal of Engineering Materials and Technology-Transactions of the Asme, 127(4), 408-416.
    Jiang, J. W., Wang, J. S., & Li, B. (2009). Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach. Physical Review B, 80(20).
    Kwon, Y. K., Berber, S., & Tomanek, D. (2004). Thermal contraction of carbon fullerenes and nanotubes. Phys Rev Lett, 92(1), 015901.
    Lakatos, D. (2009). Optical Investigation of Suspended Single Wall Carbon Nanotubes.
    Li, C. Y., & Chou, T. W. (2005a). Axial and radial thermal expansions of single-walled carbon nanotubes. Physical Review B, 71(23).
    Li, C. Y., & Chou, T. W. (2005b). Quantized molecular structural mechanics modeling for studying the specific heat of single-walled carbon nanotubes. Physical Review B, 71(7).
    Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Kataura, H., Suzuki, S., Achiba, Y., Nishibori, E., Takata, M., Sakata, M., Fujiwara, A., & Suematsu, H. (2001). Thermal expansion of single-walled carbon nanotube (SWNT) bundles: X-ray diffraction studies - art.no. 241402. Physical Review B, 64(24).
    Maniwa, Y., Fujiwara, R., Kira, H., Tou, H., Nishibori, E., Takata, M., Sakata, M., Fujiwara, A., Zhao, X. L., Iijima, S., & Ando, Y. (2001). Multiwalled carbon nanotubes grown in hydrogen atmosphere: An x-ray diffraction study. Physical Review B, 64(7).
    Mizel, A., Benedict, L. X., Cohen, M. L., Louie, S. G., Zettl, A., Budraa, N. K., & Beyermann, W. P. (1999). Analysis of the low-temperature specific heat of multiwalled carbon nanotubes and carbon nanotube ropes. Physical Review B, 60(5), 3264-3270.
    Palser, A. H. R. (1999). Interlayer interactions in graphite and carbon nanotubes. Physical Chemistry Chemical Physics, 1(18), 4459-4464.
    Popov, V. N. (2002). Low-temperature specific heat of nanotube systems. Physical Review B, 66(15).
    Raravikar, N. R., Keblinski, P., Rao, A. M., Dresselhaus, M. S., Schadler, L. S., & Ajayan, P. M. (2002). Temperature dependence of radial breathing mode Raman frequency of single-walled carbon nanotubes. Physical Review B, 66(23).
    Schelling, P. K., & Keblinski, R. (2003). Thermal expansion of carbon structures. Physical Review B, 68(3).
    Thomsen, C. (2005). Electronic transition energies and vibrational properties of carbon nanotubes.
    Yi, W., Lu, L., Zhang, D. L., Pan, Z. W., & Xie, S. S. (1999). Linear specific heat of carbon nanotubes. Physical Review B, 59(14), R9015-R9018.

    下載圖示 校內:2015-08-13公開
    校外:2015-08-13公開
    QR CODE