| 研究生: |
王辰羽 Wang, Chen-Yu |
|---|---|
| 論文名稱: |
碘修飾生質炭觸媒應用於二氧化碳環加成反應 Iodide-modified biochar catalysts for carbon dioxide cycloaddition reaction |
| 指導教授: |
劉守恒
Liu, Shou-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 碘化物修飾 、生質炭 、二氧化碳 、環加成反應 、穩定性 |
| 外文關鍵詞: | iodide modification, biochar, carbon dioxide, cycloaddition reaction, durability |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從工業革命以來,人類對煤炭和石油等化石燃料的依賴導致大量二氧化碳排放到大氣中。大氣中二氧化碳含量的持續上升將對環境產生負面影響,包括全球暖化和海平面上升。為了因應這些困境,人們開始關切二氧化碳捕獲、利用和儲存(CCUS)技術的發展,這被認為是減少碳排放的一種有潛力的解決方案。二氧化碳轉化技術被視為二氧化碳減量技術中潛在有效的方法,其中環加成反應因其將二氧化碳轉化為具有經濟價值的環狀碳酸酯的潛力而受到廣泛關注。近年來,人們開發了多種用於環加成反應的觸媒,然而這些觸媒遇到了一些挑戰,包括高溫高壓要求、反應時間長、需要輔觸媒以及產物分離困難等,因此,迫切需要開發上述問題之環境友善觸媒。
在本研究中,使用簡單的熱解方法合成碘化物修飾生物炭觸媒(C400-XI, X = 0、2、4、6、8和10)。透過XRD、SEM、EA、XPS、FTIR、及比表面積分析儀等來鑑定觸媒的形態和物理化學特性。隨後,將這些製備的觸媒用於環加成反應以生產碳酸丙烯酯(PC),再以GC-MS分析並計算轉化率和選擇性。其中,C400-8I表現出優異的催化性能,其PC產率達64.4%,這歸因於較好的碘化物含量和其表面豐富的羧酸基,有助於活化環氧化物的C-O鍵及促進開環反應。
為了優化熱解溫度並增強環加成性能,我們在保持恆定的碘化物含量同時改變熱解溫度製備CY-8I (Y = 400、500、600、700)觸媒。其中,C500-8I有最佳的性能,其PC產率達76.1%,這可能是由於有較高的CO2吸附能力和氮含量。為了增強觸媒上的含氧官能基,我們使用C500-8I作為基底,並使用過氧化氫或氫氧化鉀將其活化,分別產生HC500-8I和KC500-8I。研究結果顯示,KC500-8I表現出優異的環加成性能,其PC產率進一步提升至89.9%,這可能歸因於具有豐富的含氧官能基。
最後以實際海洋廢棄物(螃蟹殼)依照KC500-8I的合成方法製備觸媒(命名為KCS-8I)。在環氧丙烷(43 mmol)、觸媒(0.1800 g)、溫度90 ℃、CO2壓力(10 kg/cm2)、反應時間3 h的反應條件下,KCS-8I的碳酸丙烯酯產率達到約80.3%,證明了環加成過程的高效率。此外,KCS-8I在循環測試中表現出良好的可回收性和穩定性。
Since the Industrial Revolution, human reliance on fossil fuels like coal and oil has resulted in substantial emissions of carbon dioxide into the atmosphere. This persistent rise in atmospheric carbon dioxide levels has caused adverse environmental consequences, including global warming and sea level rise. In response to these challenges, the development of carbon dioxide capture, utilization, and storage (CCUS) technology has attracted attention as a promising solution to mitigate carbon emissions. Carbon dioxide conversion technology is regarded as a potentially effective approach among carbon dioxide reduction techniques. The cycloaddition reaction has garnered significant attention for its potential to convert carbon dioxide into very valuable cyclic carbonates. In the recent years, several catalysts have been developed for cycloaddition reactions. However, these catalysts encounter several challenges, including high temperature and pressure requirements, long reaction times, the need for auxiliary co-catalysts, and difficulties in product separation. To solve the aforementioned problems, there is an urgent demand for the development of eco-friendly catalysts without requirement for additional auxiliary co-catalysts.
In this research, iodide-modified biochars (named as C400-XI, X = 0, 2, 4, 6, 8, and 10) are synthesized by using a simple pyrolysis approach. The morphological and physicochemical characteristics of these catalysts are analyzed by XRD, SEM, EA, XPS, FTIR, N2 adsorption-desorption measurements, and CO2 adsorption analyses. Subsequently, these prepared catalysts are employed in the cycloaddition reaction to produce propylene carbonate. The resulting products are subjected to GC-MS analysis to determine conversion and selectivity. Among them, the C400-8I demonstrates the best catalytic performance, with the yield of propylene carbonate reaching ca. 64.4%. This can be attributed to its optimal iodide contents and the abundant presence of carboxylic acid groups on its surface, which effectively activate the C-O bond of the epoxide and facilitate ring opening.
To optimize the pyrolysis temperature and enhance cycloaddition performance, we further prepare the catalysts (denoted as CY-8I (Y = 400, 500, 600, 700)) by keeping a constant iodide content while varying the pyrolysis temperature. Among these catalysts, the C500-8I presents the most favorable performance, yielding ca. 76.1% of PC. This is likely due to its superior CO2 adsorption capacity and nitrogen contents. For the purpose of enhancing the oxygen-containing functional groups on catalysts, we further activate the C500-8I by using hydrogen peroxide or potassium hydroxide, resulting in HC500-8I and KC500-8I, respectively. The findings indicate that the KC500-8I exhibits the superior cycloaddition performance, with the yield of PC of ca. 89.9%. This is probably because of its abundant oxygen-containing functional groups.
Moreover, the iodide-modified biochars (denoted as KCS-8I) derived from marine wastes (i.e., crab shells) are synthesized via the same method of KC500-8I preparation. Under the reaction conditions involving propylene oxide (43 mmol), catalyst (0.1800 g), temperature of 90 °C, CO2 pressure (10 kg/cm2), and reaction time of 3 h, the propylene carbonate yield through KCS-8I achieves approximately 80.3%, demonstrating high efficiency in the cycloaddition process. Most importantly, the KCS-8I maintains favorable recyclability and stability during the cyclic tests.
Allen, D. T. (2014) Methane emissions from natural gas production and use: reconciling bottom-up and top-down measurements. Current Opinion in Chemical Engineering, 5, 78-83.
Alper, E. & O. Y. Orhan (2017) CO2 utilization: Developments in conversion processes. Petroleum, 3, 109-126.
Amalina, F., A. S. Abd Razak, S. Krishnan, H. Sulaiman, A. Zularisam & M. Nasrullah (2022) Biochar production techniques utilizing biomass waste-derived materials and environmental applications–A review. Journal of Hazardous Materials Advances, 100134.
Anto, S., M. Sudhakar, T. S. Ahamed, M. S. Samuel, T. Mathimani, K. Brindhadevi & A. Pugazhendhi (2021) Activation strategies for biochar to use as an efficient catalyst in various applications. Fuel, 285, 119205.
Appaturi, J. N., R. J. Ramalingam, M. K. Gnanamani, G. Periyasami, P. Arunachalam, R. Adnan, F. Adam, M. D. Wasmiah & H. A. Al-Lohedan (2020) Review on carbon dioxide utilization for cycloaddition of epoxides by ionic liquid-modified hybrid catalysts: effect of influential parameters and mechanisms insight. Catalysts, 11, 4.
Assirey, E. A. & L. R. Altamimi (2021) Chemical analysis of corn cob-based biochar and its role as water decontaminants. Journal of Taibah University for Science, 15, 111-121.
Ateka, A., P. Rodriguez-Vega, J. Ereña, A. Aguayo & J. Bilbao (2022) Kinetic modeling and reactor design of the direct synthesis of dimethyl ether for CO2 valorization. A review. Fuel, 327, 125148.
Bibi, A., H. Khan, S. Hussain, M. Arshad, F. Wahab, M. Usama, K. Khan & F. Akbal (2023) Sustainable wastewater purification with crab shell-derived biochar: Advanced machine learning modeling & experimental analysis. Bioresource Technology, 390, 129900.
Chacon, F. J., M. A. Sanchez-Monedero, L. Lezama & M. L. Cayuela (2020) Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments. Chemical Engineering Journal, 395, 125100.
Chakravarty, J. & T. A. Edwards (2022) Innovation from waste with biomass-derived chitin and chitosan as green and sustainable polymer: a review. Energy Nexus, 100149.
Chang, H., Q. Li, X. Cui, H. Wang, Z. Bu, C. Qiao & T. Lin (2018) Conversion of carbon dioxide into cyclic carbonates using wool powder-KI as catalyst. Journal of CO2 Utilization, 24, 174-179.
Chen, S., J. Liu, Q. Zhang, F. Teng & B. C. McLellan (2022) A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality. Renewable and Sustainable Energy Reviews, 167, 112537.
Chen, W., L.-x. Zhong, X.-w. Peng, R.-c. Sun & F.-c. Lu (2015) Chemical Fixation of Carbon Dioxide Using a Green and Efficient Catalytic System Based on Sugarcane Bagasse An Agricultural Waste. ACS Sustainable Chemistry & Engineering, 3, 147-152.
Chen, Y., X. Zhang, W. Chen, H. Yang & H. Chen (2017) The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. Bioresource technology, 246, 101-109.
Chu, K., F. Wang, X.-l. Zhao, X.-p. Wei, X.-w. Wang & Y. Tian (2017) One-step and low-temperature synthesis of iodine-doped graphene and its multifunctional applications for hydrogen evolution reaction and electrochemical sensing. Electrochimica Acta, 246, 1155-1162.
Cui, Y., X. Wang, L. Dong, Y. Liu, S. Chen, J. Zhang & X. Zhang (2023) Tunable and functional phosphonium-based deep eutectic solvents for synthesizing of cyclic carbonates from CO2 and epoxides under mild conditions. Journal of CO2 Utilization, 70, 102442.
Czech, B., B. Nasri-Nasrabadi, A. Krzyszczak, I. Sadok, M. Hojamberdiev, R. Yadav, K. Shirvanimoghaddam & M. Naebe (2023) Enhanced PFAS adsorption with N-doped porous carbon beads from oil-sand asphaltene. Journal of Water Process Engineering, 54, 104058.
Dai, L., F. Tan, H. Li, N. Zhu, M. He, Q. Zhu, G. Hu, L. Wang & J. Zhao (2017) Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of environmental management, 198, 70-74.
Dai, W., Q. Li, J. Long, P. Mao, Y. Xu, L. Yang, J. Zou & X. Luo (2022) Hierarchically mesoporous imidazole-functionalized covalent triazine framework: An efficient metal-and halogen-free heterogeneous catalyst towards the cycloaddition of CO2 with epoxides. Journal of CO2 Utilization, 62, 102101.
Danesh, P., P. Niaparast, P. Ghorbannezhad & I. Ali (2023) Biochar production: Recent developments, applications, and challenges. Fuel, 337, 126889.
Ding, M., X. Liu & J. Yao (2021) Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO 2 chemical fixation. New Journal of Chemistry, 45, 4147-4151.
Edrisi, A., Z. Mansoori & B. Dabir (2016) Urea synthesis using chemical looping process–Techno-economic evaluation of a novel plant configuration for a green production. International Journal of Greenhouse Gas Control, 44, 42-51.
Fan, S., H. Li, Y. Wang, Z. Wang, J. Tang, J. Tang & X. Li (2018) Cadmium removal from aqueous solution by biochar obtained by co-pyrolysis of sewage sludge with tea waste. Research on chemical intermediates, 44, 135-154.
Ghorbani, M., P. Konvalina, R. W. Neugschwandtner, G. Soja, J. Bárta, W.-H. Chen & E. Amirahmadi (2024) How do different feedstocks and pyrolysis conditions effectively change biochar modification scenarios? A critical analysis of engineered biochars under H2O2 oxidation. Energy Conversion and Management, 300, 117924.
Ghosh, S., A. Modak, A. Samanta, K. Kole & S. Jana (2021) Recent progress in materials development for CO 2 conversion: issues and challenges. Materials Advances, 2, 3161-3187.
Gong, S., F. Zhao, H. Xu, M. Li, J. Qi, H. Wang, Z. Wang, X. Fan, C. Li & J. Liu (2022) Iodine-functionalized titanium carbide MXene with ultra-stable pseudocapacitor performance. Journal of Colloid and Interface Science, 615, 643-649.
He, L., W. Zhang, Y. Yang, J. Ma, F. Liu & M. Liu (2021) Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions. Journal of CO2 Utilization, 54, 101750.
Helal, A., M. Usman, M. E. Arafat & M. M. Abdelnaby (2020) Allyl functionalized UiO-66 metal-organic framework as a catalyst for the synthesis of cyclic carbonates by CO2 cycloaddition. Journal of Industrial and Engineering Chemistry, 89, 104-110.
Hu, M., Z. Ye, Q. Zhang, Q. Xue, Z. Li, J. Wang & Z. Pan (2022) Towards understanding the chemical reactions between KOH and oxygen-containing groups during KOH-catalyzed pyrolysis of biomass. Energy, 245, 123286.
Hu, X., H. Wang, C. F. Faul, J. Wen, Y. Wei, M. Zhu & Y. Liao (2020) A crosslinking alkylation strategy to construct nitrogen-enriched tetraphenylmethane-based porous organic polymers as efficient carbon dioxide and iodine adsorbents. Chemical Engineering Journal, 382, 122998.
Igalavithana, A. D., S. W. Choi, J. Shang, A. Hanif, P. D. Dissanayake, D. C. Tsang, J.-H. Kwon, K. B. Lee & Y. S. Ok (2020) Carbon dioxide capture in biochar produced from pine sawdust and paper mill sludge: Effect of porous structure and surface chemistry. Science of the total environment, 739, 139845.
Ji, Q. & H. Li (2021) High surface area activated carbon derived from chitin for efficient adsorption of Crystal Violet. Diamond and Related Materials, 118, 108516.
Jing, F., Y. Sun, Y. Liu, Z. Wan, J. Chen & D. C. Tsang (2022) Interactions between biochar and clay minerals in changing biochar carbon stability. Science of the Total Environment, 809, 151124.
Kamkeng, A. D., M. Wang, J. Hu, W. Du & F. Qian (2021) Transformation technologies for CO2 utilisation: Current status, challenges and future prospects. Chemical Engineering Journal, 409, 128138.
Khaligh, N. G., T. Mihankhah & M. R. Johan (2018) Efficient chemical fixation of CO2 into cyclic carbonates using poly (4‐vinylpyridine) supported iodine as an eco‐friendly and reusable heterogeneous catalyst. Heteroatom Chemistry, 29, e21440.
Kiatkittipong, K., M. A. A. Mohamad Shukri, W. Kiatkittipong, J. W. Lim, P. L. Show, M. K. Lam & S. Assabumrungrat (2020) Green pathway in utilizing CO2 via cycloaddition reaction with epoxide—a mini review. Processes, 8, 548.
Kim, H. M., K. Oh, D. Kyung, H. g. Ahn, I. Yoon, S. Kwak & I. W. Nah (2022) Preparation of polyvinyl alcohol–chitosan–NH4Br catalyst and its application to cycloaddition of carbon dioxide to propylene oxide. The Canadian Journal of Chemical Engineering, 100, 1755-1763.
Kumari, S., S. H. K. Annamareddy, S. Abanti & P. K. Rath (2017) Physicochemical properties and characterization of chitosan synthesized from fish scales, crab and shrimp shells. International journal of biological macromolecules, 104, 1697-1705.
Leng, L., Q. Xiong, L. Yang, H. Li, Y. Zhou, W. Zhang, S. Jiang, H. Li & H. Huang (2021) An overview on engineering the surface area and porosity of biochar. Science of the total Environment, 763, 144204.
Li, H.-M., G.-D. Li, J.-Y. Li & T. Zhang (2022) An Iodine-Functionalized Metal–Organic framework for catalytic alkene bromination. Inorganic Chemistry Communications, 141, 109529.
Li, P., T. Feng, Z. Song, Y. Tan & W. Luo (2020) Chitin derived biochar for efficient capacitive deionization performance. RSC advances, 10, 30077-30086.
Li, W., H. Wang, X. Jiang, J. Zhu, Z. Liu, X. Guo & C. Song (2018) A short review of recent advances in CO 2 hydrogenation to hydrocarbons over heterogeneous catalysts. RSC advances, 8, 7651-7669.
Lim, G., K. B. Lee & H. C. Ham (2016) Effect of N-containing functional groups on CO2 adsorption of carbonaceous materials: a density functional theory approach. The Journal of Physical Chemistry C, 120, 8087-8095.
Liu, M., X. Wang, Y. Jiang, J. Sun & M. Arai (2018a) Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: current state-of-the art of catalyst development and reaction analysis. Catalysis Reviews.
Liu, S.-H. & Y.-Y. Huang (2018b) Valorization of coffee grounds to biochar-derived adsorbents for CO2 adsorption. Journal of Cleaner Production, 175, 354-360.
Liu, X., Y. Chen, Y. Yao, Q. Bai & Z. Wu (2018c) Iodine-doped carbon fibers as an efficient metal-free catalyst to activate peroxymonosulfate for the removal of organic pollutants. Catalysis Science & Technology, 8, 5482-5489.
Liu, Z.-x., M. Gao, X.-m. Zhang, Y. Liang, Y.-j. Guo, W.-l. Liu & J.-w. Bao (2023) CCUS and CO2 injection field application in abroad and China: Status and progress. Geoenergy Science and Engineering, 212011.
Liu, Z., W. Yang, W. Xu & Y. Liu (2018d) Removal of elemental mercury by bio-chars derived from seaweed impregnated with potassium iodine. Chemical engineering journal, 339, 468-478.
Ma, J., W. Huang, X. Zhang, Y. Li & N. Wang (2021) The utilization of lobster shell to prepare low-cost biochar for high-efficient removal of copper and cadmium from aqueous: Sorption properties and mechanisms. Journal of Environmental Chemical Engineering, 9, 104703.
Mathew, M. (2022) Nuclear energy: A pathway towards mitigation of global warming. Progress in Nuclear Energy, 143, 104080.
Mohan, K., T. Muralisankar, R. Jayakumar & C. Rajeevgandhi (2021) A study on structural comparisons of α-chitin extracted from marine crustacean shell waste. Carbohydrate Polymer Technologies and Applications, 2, 100037.
Morales, L. F., K. Herrera, J. E. López & J. F. Saldarriaga (2021) Use of biochar from rice husk pyrolysis: assessment of reactivity in lime pastes. Heliyon, 7.
Mutabazi, E., X. Qiu, Y. Song, C. Li, X. Jia, I. Hakizimana, J. Niu, M. Nuramkhaan & Y. Zhao (2024) Cr (VI) adsorption on activated carbon, sludge derived biochar, and peanut shells derived biochar: Performance, mechanisms during the reuse process and site energy distribution analysis. Journal of Water Process Engineering, 57, 104679.
Natongchai, W., S. Posada-Pérez, C. Phungpanya, J. A. Luque-Urrutia, M. Sola, V. D’Elia & A. Poater (2022) Enhancing the catalytic performance of group I, II metal halides in the cycloaddition of CO2 to epoxides under atmospheric conditions by cooperation with homogeneous and heterogeneous highly nucleophilic aminopyridines: experimental and theoretical study. The Journal of Organic Chemistry, 87, 2873-2886.
Ngasotter, S., K. M. Xavier, M. M. Meitei, D. Waikhom, J. Pathak & S. K. Singh (2023) Crustacean shell waste derived chitin and chitin nanomaterials for application in agriculture, food, and health–A review. Carbohydrate Polymer Technologies and Applications, 100349.
Nguyen, Q. T., X. H. Do, K. Y. Cho, Y.-R. Lee & K.-Y. Baek (2022) Amine-functionalized bimetallic Co/Zn-zeolitic imidazolate frameworks as an efficient catalyst for the CO2 cycloaddition to epoxides under mild conditions. Journal of CO2 Utilization, 61, 102061.
Olajire, A. A. (2013) A review of mineral carbonation technology in sequestration of CO2. Journal of Petroleum Science and Engineering, 109, 364-392.
Panahi, H. K. S., M. Dehhaghi, Y. S. Ok, A.-S. Nizami, B. Khoshnevisan, S. I. Mussatto, M. Aghbashlo, M. Tabatabaei & S. S. Lam (2020) A comprehensive review of engineered biochar: production, characteristics, and environmental applications. Journal of cleaner production, 270, 122462.
Parodi, A., M. Vagnoni, L. Frontali, C. Albonetti, F. De Giorgio, A. Mezzi, E. Petri, C. Samorì, F. Soavi & G. Ruani (2023) Bifunctional heterogeneous catalysts from biomass and waste polysaccharides for the conversion of CO 2 into cyclic carbonates. Journal of Materials Chemistry A, 11, 775-788.
Pescarmona, P. P. (2021) Cyclic carbonates synthesised from CO2: Applications, challenges and recent research trends. Current Opinion in Green and Sustainable Chemistry, 29, 100457.
Petrovic, B., M. Gorbounov & S. M. Soltani (2022) Impact of surface functional groups and their introduction methods on the mechanisms of CO2 adsorption on porous carbonaceous adsorbents. Carbon Capture Science & Technology, 3, 100045.
Qiao, Y. & C. Wu (2022) Nitrogen enriched biochar used as CO2 adsorbents: a brief review. Carbon Capture Science & Technology, 2, 100018.
Qin, Y., B. Chai, C. Wang, J. Yan, G. Fan & G. Song (2022) Removal of tetracycline onto KOH-activated biochar derived from rape straw: Affecting factors, mechanisms and reusability inspection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 640, 128466.
Qu, J., Y. Wang, X. Tian, Z. Jiang, F. Deng, Y. Tao, Q. Jiang, L. Wang & Y. Zhang (2021) KOH-activated porous biochar with high specific surface area for adsorptive removal of chromium (VI) and naphthalene from water: Affecting factors, mechanisms and reusability exploration. Journal of Hazardous Materials, 401, 123292.
Rafiee, A., K. R. Khalilpour & D. Milani. 2019. CO2 conversion and utilization pathways. In Polygeneration with Polystorage for Chemical and Energy Hubs, 213-245. Elsevier.
Rehman, A., V. C. Eze, M. G. Resul & A. Harvey (2019) Kinetics and mechanistic investigation of epoxide/CO2 cycloaddition by a synergistic catalytic effect of pyrrolidinopyridinium iodide and zinc halides. Journal of Energy Chemistry, 37, 35-42.
Rehman, A., F. Saleem, F. Javed, A. Ikhlaq, S. W. Ahmad & A. Harvey (2021) Recent advances in the synthesis of cyclic carbonates via CO2 cycloaddition to epoxides. Journal of Environmental Chemical Engineering, 9, 105113.
Samikannu, A., L. J. Konwar, P. Mäki-Arvela & J.-P. Mikkola (2019) Renewable N-doped active carbons as efficient catalysts for direct synthesis of cyclic carbonates from epoxides and CO2. Applied Catalysis B: Environmental, 241, 41-51.
Schleussner, C.-F., J. Rogelj, M. Schaeffer, T. Lissner, R. Licker, E. M. Fischer, R. Knutti, A. Levermann, K. Frieler & W. Hare (2016) Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 6, 827-835.
Shafawi, A. N., A. R. Mohamed, P. Lahijani & M. Mohammadi (2021) Recent advances in developing engineered biochar for CO2 capture: An insight into the biochar modification approaches. Journal of Environmental Chemical Engineering, 9, 106869.
Shamshina, J. L., P. Berton & R. D. Rogers (2019) Advances in functional chitin materials: a review. ACS Sustainable Chemistry & Engineering, 7, 6444-6457.
Shen, B., T. Jia, H. Wang, L. Chen, X. Zhang, Y. Wang, M. Zhou, C. Zhai, X. Li & H. Tao (2024) Enhanced Electrochemical CO2 Reduction for High Ethylene Selectivity Using Iodine-Doped Copper Oxide Catalysts. Journal of Alloys and Compounds, 173550.
Tabanelli, T., D. Bonincontro, S. Albonetti & F. Cavani. 2019. Conversion of CO2 to valuable chemicals: organic carbonate as green candidates for the replacement of noxious reactants. In Studies in Surface Science and Catalysis, 125-144. Elsevier.
Tan, Z., X. Zhang, L. Wang, B. Gao, J. Luo, R. Fang, W. Zou & N. Meng (2019) Sorption of tetracycline on H2O2-modified biochar derived from rape stalk. Environmental Pollutants and Bioavailability, 31, 198-207.
Tang, L., S. Zhang, Q. Wu, X. Wang, H. Wu & Z. Jiang (2018) Heterobimetallic metal–organic framework nanocages as highly efficient catalysts for CO 2 conversion under mild conditions. Journal of Materials Chemistry A, 6, 2964-2973.
Tao, D.-J., F.-F. Mao, J.-J. Luo, Y. Zhou, Z.-M. Li & L. Zhang (2020) Mesoporous N-doped carbon derived from tea waste for high-performance CO2 capture and conversion. Materials Today Communications, 22, 100849.
Tomczyk, A., Z. Sokołowska & P. Boguta (2020) Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191-215.
Usman, M., A. Rehman, F. Saleem, A. Abbas, V. C. Eze & A. Harvey (2023) Synthesis of cyclic carbonates from CO 2 cycloaddition to bio-based epoxides and glycerol: an overview of recent development. RSC advances, 13, 22717-22743.
Valluri, S., V. Claremboux & S. Kawatra (2022) Opportunities and challenges in CO2 utilization. journal of environmental sciences, 113, 322-344.
Vidal, J. L., V. P. Andrea, S. L. MacQuarrie & F. M. Kerton (2019) Oxidized biochar as a simple, renewable catalyst for the production of cyclic carbonates from carbon dioxide and epoxides. ChemCatChem, 11, 4089-4095.
Vidal, J. L., T. Jin, E. Lam, F. Kerton & A. Moores (2022) Blue is the new green: Valorization of crustacean waste. Current Research in Green and Sustainable Chemistry, 100330.
Wang, H., W. Guo, B. Liu, Q. Si, H. Luo, Q. Zhao & N. Ren (2020a) Sludge-derived biochar as efficient persulfate activators: Sulfurization-induced electronic structure modulation and disparate nonradical mechanisms. Applied Catalysis B: Environmental, 279, 119361.
Wang, S., Z. Zhu, D. Hao, T. Su, C. Len, W. Ren & H. Lü (2020b) Synthesis cyclic carbonates with BmimCl-based ternary deep eutectic solvents system. Journal of CO2 Utilization, 40, 101250.
Wang, T., P. D. Dissanayake, M. Sun, Z. Tao, W. Han, N. An, Q. Gu, D. Xia, B. Tian & Y. S. Ok (2021) Adsorption and visible-light photocatalytic degradation of organic pollutants by functionalized biochar: role of iodine doping and reactive species. Environmental Research, 197, 111026.
Wang, X., L. Yang, Y. Chen, C. Yang, J. Lan & J. Sun (2020c) Metal-free triazine-incorporated organosilica framework catalyst for the cycloaddition of CO2 to epoxide under solvent-free conditions. Industrial & Engineering Chemistry Research, 59, 21018-21027.
Wang, Y., H. Dong, L. Li, R. Tian, J. Chen, Q. Ning, B. Wang, L. Tang & G. Zeng (2019) Influence of feedstocks and modification methods on biochar’s capacity to activate hydrogen peroxide for tetracycline removal. Bioresource Technology, 291, 121840.
Wang, Y. & R. Liu (2018) H2O2 treatment enhanced the heavy metals removal by manure biochar in aqueous solutions. Science of the Total Environment, 628, 1139-1148.
Wen, C., T. Liu, D. Wang, Y. Wang, H. Chen, G. Luo, Z. Zhou, C. Li & M. Xu (2023) Biochar as the effective adsorbent to combustion gaseous pollutants: preparation, activation, functionalization and the adsorption mechanisms. Progress in Energy and Combustion Science, 99, 101098.
Wilkes, M. D., S. Mukherjee & S. Brown (2021) Linking CO2 capture and pipeline transportation: sensitivity analysis and dynamic study of the compression train. International Journal of Greenhouse Gas Control, 111, 103449.
Wu, S., D. Wang, C. Liu, G. Fang, T.-R. Sun, P. Cui, H. Yan, Y. Wang & D. Zhou (2021) Pyridinic-and pyrrolic nitrogen in pyrogenic carbon improves electron shuttling during microbial Fe (III) reduction. ACS Earth and Space Chemistry, 5, 900-909.
Xiang, W., J. Ren, S. Chen, C. Shen, Y. Chen, M. Zhang & C.-j. Liu (2020) The metal–organic framework UiO-66 with missing-linker defects: A highly active catalyst for carbon dioxide cycloaddition. Applied Energy, 277, 115560.
Xie, Y., L. Wang, H. Li, L. J. Westholm, L. Carvalho, E. Thorin, Z. Yu, X. Yu & Ø. Skreiberg (2022) A critical review on production, modification and utilization of biochar. Journal of Analytical and Applied Pyrolysis, 161, 105405.
Xu, J., Y.-L. Gan, J.-J. Pei & B. Xue (2020) Metal-free catalytic conversion of CO2 into cyclic carbonate by hydroxyl-functionalized graphitic carbon nitride materials. Molecular Catalysis, 491, 110979.
Yaashikaa, P., P. S. Kumar, S. Varjani & A. Saravanan (2020) A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. Biotechnology Reports, 28, e00570.
Yan, T., H. Liu, Z. Zeng & W. Pan (2023) Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. Journal of CO2 Utilization, 68, 102355.
Yan, Y., S. Manickam, E. Lester, T. Wu & C. H. Pang (2021) Synthesis of graphene oxide and graphene quantum dots from miscanthus via ultrasound-assisted mechano-chemical cracking method. Ultrasonics Sonochemistry, 73, 105519.
Yang, Z., Y. Dong, X. Meng, X. Yang, R. Hu, Y. Liu & J. Wu (2022) Nitrogen-functionalized bone chars with developed surface area for efficient adsorption of multiple aquatic pollutants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, 129061.
Yao, Z., H. Nie, Z. Yang, X. Zhou, Z. Liu & S. Huang (2012) Catalyst-free synthesis of iodine-doped graphene via a facile thermal annealing process and its use for electrocatalytic oxygen reduction in an alkaline medium. Chemical Communications, 48, 1027-1029.
Yue, S., P. Wang & X. Hao (2019) Synthesis of cyclic carbonate from CO2 and epoxide using bifunctional imidazolium ionic liquid under mild conditions. Fuel, 251, 233-241.
Zhang, F., Y. Wang, X. Zhang, X. Zhang, H. Liu & B. Han (2020) Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition. Green Chemical Engineering, 1, 82-93.
Zhang, L., Z. Yao, L. Zhao, Z. Li, W. Yi, K. Kang & J. Jia (2021a) Synthesis and characterization of different activated biochar catalysts for removal of biomass pyrolysis tar. Energy, 232, 120927.
Zhang, M., Y. Xu, B. L. Williams, M. Xiao, S. Wang, D. Han, L. Sun & Y. Meng (2021b) Catalytic materials for direct synthesis of dimethyl carbonate (DMC) from CO2. Journal of cleaner production, 279, 123344.
Zhang, S., J. Xiong, J. Lu, N. Zhou, H. Li, X. Cui, Q. Zhang, Y. Liu, R. Ruan & Y. Wang (2022) Synthesis of CaO from waste shells for microwave-assisted catalytic pyrolysis of waste cooking oil to produce aromatic-rich bio-oil. Science of The Total Environment, 827, 154186.
Zhang, W.-H., P.-P. He, S. Wu, J. Xu, Y. Li, G. Zhang & X.-Y. Wei (2016) Graphene oxide grafted hydroxyl-functionalized ionic liquid: A highly efficient catalyst for cycloaddition of CO2 with epoxides. Applied Catalysis A: General, 509, 111-117.
Zhao, P., X. Ye, Y. Zhu, H. Jiang, J. Pan, Z. Wan, C. Jia & C. Yang (2019) Iodine-steam functionalized reduced graphene oxide/oxidized carbon yarn electrodes for knittable fibriform supercapacitor. Journal of Power Sources, 442, 227188.
Zhao, Y., Y. Zhao, J. Qiu, Z. Li, H. Wang & J. Wang (2020) Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction. ACS Sustainable Chemistry & Engineering, 8, 18413-18419.
Zhi, Y., P. Shao, X. Feng, H. Xia, Y. Zhang, Z. Shi, Y. Mu & X. Liu (2018) Covalent organic frameworks: efficient, metal-free, heterogeneous organocatalysts for chemical fixation of CO 2 under mild conditions. Journal of Materials Chemistry A, 6, 374-382.
邱靖聞. 2022. 氧化鋅/生質碳複合觸媒應用於二氧化碳環加成反應 (Zinc oxide/biochar catalysts for cycloaddition conversion of carbon dioxide to propylene oxide). In 環境工程學系, 94. 台南市: 國立成功大學.
侯鈺虹. 2020. 以楓香果實製備生質炭應用於二氧化碳環加成反應 (Biochars derived from the fruits of Liquidambar formosana Hance for cycloaddition of carbon dioxide to propylene oxide). In 環境工程學系, 93. 台南市: 國立成功大學.
校內:2029-08-13公開