| 研究生: |
黃盟權 Huang, Meng-Cyuan |
|---|---|
| 論文名稱: |
葉輪形狀優化對50mm流量計準確度之影響 The Effects of Optimizing Impeller Blade Geometry on the Accuracy of 50mm Flowmeter |
| 指導教授: |
周榮華
Chou, Jung-Hua |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 渦輪式流量計 、田口方法 、葉片 、CFD |
| 外文關鍵詞: | Turbine flow meter, Taguchi method, Impeller blade, CFD |
| 相關次數: | 點閱:117 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
渦輪式流量計為目前市面上常見之流量計,其特點為可計量流量範圍大、壓力損失小、結構穩健及可使用年限長。此類型的流量計因其設計關係,葉片轉動時需要轉矩較大,因此在低流量時,反應較不靈敏,在低流量的計量時表現不佳。本研究目在於設計50mm口徑流量計之葉片,使之在低流量時,能有較好的性能表現。
本研究利田口實驗設計方法,設計L9直交表作實驗之依據,以葉輪翼型、輪轂直徑、葉片安裝角及扭轉角作為控制因子,並定義品質特性之理想機能,以望大作為指標,設計出流量計之葉輪組合,並使用CFD軟體模擬葉片在不同設計參數下對於流量計於低流量計量的影響,且與實機測試之結果比較。結果發現性能最佳的葉片,啟動流量為0.6m^3⁄hr、且在1m^3⁄hr、1.5m^3⁄hr、4m^3⁄hr不同的流量下與原始葉片比較之下有較佳的線性表現,此研究可做為未來設計高精度流量計之參考。
Axial Turbine flowmeters are widely used in measuring flowrates of liquids with high flowrate, less pressure loss, and robust structure for long-term application. But the impeller needs a large torque for rotation and leads to poor performance at low flowrates. In this research the geometry of the impeller blade was studied for improving the performance at low flowrates of the flowmeter of nominal size of 50mm flow mete.
The Taguchi method was employed to design an L9 orthogonal table for experimentation, using the airfoil blade type, hub diameter, blade mounting angle, and twist angle as the control factors. In addition, computational fluid dynamics (CFD) simulations were also conducted for the same configurations as the experiments so that comparisons with the experimental results could be made. The results show that the designed impeller which performed best achieved the starting flowrate of (0.6m^3)⁄hr, and had better linearity for the flowrates of 1 m^3⁄hr, 1.5 m^3⁄hr, and 4 m^3⁄hr. This provides a greater understanding of the effects of impeller design on the accuracy of turbine flow meters.
[1]楊崇明, 蘇政賢, 陳宗霆,林于程, C級電子式經濟效益評估研究, 自來水會刊第33卷第3期,pp.1-13, 2010.
[2]經濟部標準檢驗局,中國國家標準CNS 14866. 2004.
[3]經濟部標準檢驗局,中國國家標準CNS 14866. 2012.
[4]J. K. Watterson and S. R. Raghunathan, Investigation of Wells Turbine Performance Using 3-D CFD. Proceedings of the 31st Intersociety, vol.3, pp.1777-1782, 1996.
[5]L.M.C. Gato, A.F. de O. Falcão, Aerodynamics of the Wells Turbine. International Journal of Mechanical Sciences, vol.30, pp.383-395, 1988.
[6]羅際航, 具不同翼型葉片的水平式風力機之數值模擬, 國立台灣科技大學機械工程系碩士論文, 2006.
[7]謝銘峻, Darrieus風機葉片數與扭轉角度對風機性能的影響, 國立成功大學系統及船舶機電工程學系碩士論文, 2013.
[8]黃建維,葉片形狀對小型水力發電機效率之影響,工程科學系碩士論文, 2014.
[9]蕭易融,含管件之奧多曼流量計的流場品質分析之數值模擬,義守大學機械與自動化工程學系碩士論文, 2010.
[10]D. WADLOW, TURBINE FLOW METER,Part I:Details of the Basic Axial Flow Meter, 1999.
[11]P. W. Stoltenkamp, Dynamics of turbine flow meters, Technische Universiteit Eindhoven, 2007.
[12]http://www.zenner.com/tl_files/content/ZENNER%20COM%20ENGLISCH/Downloads/CAT_Bulk-water-meters_EN.pdf.
[13]F. Arregui, E. Cabrera Jr., R. Cobacho, Integrated Water Meter Management Published by IWA Publishing, Alliance House, 12 Caxton Street, London, pp.8-11., 2006.
[14]A. J. Stepanoff, Centrifugal and Axial Flow Pumps: Theory, Design, and Application 2^nd, John Wiley and Sons, 1957.
[15]E. N. Jacobs, K. E. Weard., R. M. Pinkerton., NACA Report No. 460, The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel, NACA, 1933.
[16]UIUC Airfoil Data Site. http://m-selig.ae.illinois.edu/ads/coord_database.html, 2015.
[17]Tools, A., http://airfoiltools.com/airfoil/naca4digit, 2015.
[18]李輝煌, 田口方法-品質設計的原理與實務,高立圖書有限公司, 2012.
[19]J.P. Holman, Heat Transfer. McGraw-Hill Publishing Co., New York,pp.207, 2002.
[20]H.-H. Lee, Finite Element Simulations with ANSYS Workbench 14, Theory-Applications-Case Studies, 2013.
[21]B. E. Launder, D. B. Spalding. Lectures in Mathematical Models of Turbulence, Academic Press, London, England, 1972.
[22]J. O. Hinze, Turbulence. McGraw-Hill Publishing Co., New York, 1975.
[23]ANSYS Fluent 12.0 Theory Guide, 2009.
[24]F. M. White,G. H. Christoph, A Simple New Analysis of Compressible Turbulent Two-Dimensional Skin Friction Under Arbitrary Conditions, Technical Report AFFDL-TR-70-133, 1971.