簡易檢索 / 詳目顯示

研究生: 許庭禎
Hsu, Ting-Chen
論文名稱: 氮化銦歐姆接觸特性及其表面處理之研究
The Study of Ohmic Contact of InN and Surface Treatment
指導教授: 張守進
Chang, Shoou-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 72
中文關鍵詞: 表面處理氮化銦歐姆接觸蕭基特接觸特徵電阻
外文關鍵詞: Ohmic contact, InN, Schottky contact, specific contact resistance, surface treatment
相關次數: 點閱:76下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們首先利用霍爾量測、原子力顯微鏡、X光繞射及掃描式電子顯微鏡研究氮化銦磊晶層之電學及光學特性,其中可以發現氮化銦之電學參數是相當特別且優異,但由掃描式電子顯微鏡可觀察出其剛成長完成之氮化銦其表面卻存在著不少像洞穴似缺陷。
    接著分別利用熱蒸鍍機、電子束蒸鍍機及射頻濺鍍機沉積鈦、鋁、鎳、金、鉑、銀、釕(Ru)、銦錫氧化物(ITO) 、鎢化鈦藉以探討其接觸特性,不同金屬之歐姆特性已被量測並計算得出,其中最低特徵觸電阻為2.11×10-7 ohm-cm2於氮氣環境下鋁回火400oC,此外我們製作並量測出最大之特徵觸電阻為5.14×10-4 ohm-cm2於氮氣環境下釕回火500oC。
    另一方面,研製蕭基特接觸於氮化銦薄膜是非常困難去實現,因此利用四種不同方式之表面處理去探討其結果:金屬-絕緣體-半導體結構、異質接面結構、化學表面處理和熱回火處理。金屬-絕緣體-半導體結構之絕緣層薄則易導致電流穿透,厚則轉變為電容特性。異質結構回火後雖有蕭基特能障,但其特性不明顯。然而化學表面處理之鹽酸及硫化銨之抑制高載子濃度有限,乙醇基之氫氧化鉀可使氮化銦片濃度降低至6.85×1014 cm-2,但其浸泡於沸騰之乙醇基之氫氧化鉀30分鐘後,電子移動率卻呈指數型退化由1130衰減至70.9 cm2/V-s。最後之回火熱處理,適當回火將改善氮化銦之晶格品質及電學特性,然而回火溫度若過高將會使氮化銦氧化更甚者解離。

    In this dissertation, we first study the basic electrical and optical properties of InN epilayer by hall measurement, atomic force microscope (AFM), X-ray Diffraction (XRD) and scanning electron microscope (SEM). Electrical properties on InN epilayer are excellent and unusual. The surface of as-grown InN epilayer persist many defects like holes naturally by SEM.
    Contact properties with Ti, Al, Ni, Au, Pt, Ag, Ru, ITO and TiW using thermal evaporation, E-gun and RF sputter have been investigated. Ohmic properties of variable metals contact on InN films were obtained and the lowest specific contact resistance of 2.11×10-7 ohm-cm2 were investigated with Al 400oC N2 annealing. Besides, we achieved the largest specific contact resistance is 5.14×10-4 ohm-cm2 with Ru contact annealed 500oC.
    On the other hand, developing schottky contact on InN thin film is extremely difficult to accomplish. Four kinds of surface treatments have been studied: MIS structure, hetero-junction, chemical surface treatment and annealing effect. MIS structure with thinner insulator would lead current tunnel easily, with thicker insulator would turn into capacitance characteristics by I-V measurement. Hetero-junction does carry out schottky barrier, but not obviously. With chemical surface treatment, HCl and (NH4)2Sx on InN films in electrical properties are limited to lower carrier concentration. Alcohol-based KOH would make InN degrade because of forming the defects with etching. The lowest sheet carrier concentration we achieved is 6.85×1014 cm-2, but hall mobility exponential decayed from 1130 to 70.9 cm2/V-s with boiled alcohol-based KOH in 30 min. The last treatment is annealing effect. Annealing on InN films would improve InN crystalline quality and electrical properties with appropriate temperature. However, if annealing temperature is too high, InN would oxidation and dissociation.

    Abstract (in Chinese) I Abstract (in English) III Acknowledgement V Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1. The background of InN materials 1 1-2. Organization of this dissertation 4 Chapter 2 Fabrication System and Measurement Theory 10 2-1. RF Sputtering System 10 2-2. Measurement of barrier height 11 2-2-1. Capacitance-Voltage (C-V) Measurement 11 2-2-2. Current-Voltage (I-V) Measurement 12 2-2-3. Photoelectric Measurement 13 2-3. Auger Emission Spectroscopy (AES) System 14 2-4. Hall Measurement System 15 Chapter 3 Material Analysis and Contact Properties of InN 20 3-1. Fabrication and Material Analysis of InN films 21 3-2. Metal-Semiconductor contact properties 23 3-2-1. Schottky contact behavior 25 3-2-2. Ohmic contact behavior 25 3-3. Characteristics of contact properties on InN films 26 3-3-1. Analysis of circular transmission line method (CTLM) 27 3-3-2. Fabrication of CTLM pattern with various metals 29 3-3-3. Analysis of variable electrodes on InN 30 3-4. Summary 31 Chapter 4 Characteristics of surface treatment on InN 45 4-1. Motivation and introduction of surface treatment on InN films 46 4-2. Experiment and analysis of surface treatment on InN 46 4-2-1. Inserting an insulator 47 4-2-1. Hetero-junction 47 4-2-2. Chemical surface treatment 48 4-2-3. Annealing effect 50 4-3. Summary 51 Chapter 5 Conclusion and Future Work 69 5-1. Conclusion 69 5-2. Future Work 71

    Chapter 1
    [1] H. J. Hovel and J. J. Cuomo, Appl. Phys. Lett., Vol. 20, pp. 71, 1972.
    [2] K. Osamura, K. Nakajima, Y. Murakami, H. P. Shingu, and A. Ohtsuki, Solid State Commun., Vol. 11, pp. 617, 1972.
    [3] K. Osamura, S. Naka, and Y. Murakami, J. Appl. Phys., Vol. 46, pp. 3432, 1975.
    [4] S. N. Mohammad and H. Morkoc, Prog. Quantum Electron, Vol. 20, pp. 361, 1996.
    [5] V. W. L. Chin, T. L. Tansley, and T. Osotchan, J. Appl. Phys., Vol. 75, pp. 7365, 1994.
    [6] E. Bellotti, B. K. Doshi, K. F. Brennan, J. D. Albrecht, and P. P. Ruden, J. Appl. Phys., Vol. 5, pp. 916 , 1999.
    [7] B. E. Foutz, S. K. O’Leary, M. S. Shur, and L. F. Eastman, J. Appl. Phys., Vol. 85, pp. 7727, 1999.
    [8] T.L. Tansley, C.P. Foley, J. Appl. Phys., Vol. 59, pp. 3241, 1986.
    [9] J. Hovel, J.J. Cuomo, Appl. Phys. Lett., Vol. 20, pp.71, 1972.
    [10] K. Osamura, S. Nara, Y. Murakami, J. Appl. Phys., Vol. 46, pp. 3432, 1975.
    [11] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett., Vol. 81, pp. 1246, 2002.

    [12] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett., Vol. 80, pp. 3967, 2002.
    [13] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff., J. Appl. Phys., Vol. 94, pp. 4457, 2004.
    [14] S. P. Fu and Y. F. Chen, Appl. Phys. Lett., Vol. 85, pp. 1253, 2002.
    [15] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J., Phys. Rev. B, Vol. 66, pp. 201403, 2002.
    [16] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J., Appl. Phys. Lett., Vol. 80, pp. 4741, 2002.
    [17] A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells, Vol. 35, pp. 53, 1994.
    [18] E. Dimakis, E. Iliopoulos, and K. Tsagaraki, Th. Kehagias and Ph. Komninou, A. Georgakilas, J. Appl. Phys., Vol. 97, pp. 113520, 2005.
    [19] Hai Lu, William J. Schaff, and Lester F. Eastman, C. E. Stutz, Appl. Phys. Lett., Vol. 82, pp. 1736, 2003.
    [20] N. C. Chen, P. H. Chang, Y. N. Wang, H. C. Peng, W. C. Lien, C. F. Shih, Chin-An Chang, and G. M. Wu, Appl. Phys. Lett., Vol. 87, pp. 21211, 2005.
    [21] Rohit Khanna, B. P. Gila, L. Stafford, S. J. Pearton, F. Ren, I. I. Kravchenko, Appl. Phys. Lett., Vol. 90, pp. 162107, 2007.
    [22] H. Lu, W. J. Schaff, L. F. Eastmanl, J. Wu, W. Walukiewicz, D. C. Look, and R. J. Molnar, Mat. Res. Soc. Symp. Proc., Vol. 743, pp. L4.10, 2003.
    [23] Je Won Kim , Kyu Han Lee, Sangsu Hong, Thin Solid Films, Vol. 515, pp. 4405, 2007.
    [24] Yu-Syuan Lin, Shun-Hau Koa, Chih-Yuan Chan, Shawn S. H. Hsu, Hong-Mao Lee and Shangjr Gwo, Appl. Phys. Lett., Vol. 90, pp. 142111, 2007.
    [25] Elaissa Trybusa, Gon Namkoonga, Walter Hendersona, Shawn Burnhama, W. Alan Doolittlea, , Maurice Cheungb, Alexander Cartwright, J. Cry. Grow., Vol. 288, pp. 218, 2006.
    [26] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, Akio Yamamoto, J. Appl. Phys., Vol. 94, pp. 2779, 2003.

    Chapter 2
    [1] J. L. Vossen and W. Kern, “Thin Flim Processes”, Academic Press, New York, pp. 131, 1978.
    [2] C. Y. Chang and S.M. Sze, “ULSI Technology”, McGraw-Hill, New York, pp. 380, 1996.
    [3] S. I. Shah, “Handbook of Thin Film Process Technology”, Institute of Physics Pub, Bristol, UK, pp. A3.0:1, 1995.
    [4] S. M. Sze, “VLSI Technology”, McGraw-Hill, New York, pp. 387, 1978.
    [5] Chien-Ming Wang, “Materials Analysis”, C.S.M.S , 1998
    [6] A. M. Goodman, J. Appl. Phys, Vol. 34, pp. 329, 1963.
    [7] R. H. Fowler, Phys. Rev, Vol. 38, pp. 45, 1931.
    [8] S. M. Sze, “Physics of Semiconductor Devices”, 1981 (New York: Wiley).

    Chapter 3
    [1] Z.L. Xie, R. Zhang, B. Liu, L. Li, C.X. Liu, X.Q. Xiu, H. Zhao, P. Han, S.L. Gu, Y. Shi, Y.D. Zheng, J. Cry. Grow. , Vol. 298, pp. 409, 2007.
    [2] T. Matsuoka et al., Proc. SPIE, Vol. 6473, pp. 647302-1, 2007.
    [3] J. Wu, W. Walukiewicz, W. Shan, K. M. Wu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys., Vol. 94, pp. 4457 , 2003.
    [4] W. Walukiewicz et al., Physica (Amsterdam), Vol. 302B, pp. 123 2001.
    [5] R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz,1 J.W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, Phys. Rev. Lett. , Vol. 96, pp. 125505, 2006.
    [6] Jia-Chin Lin, “The study of III-nitride semiconductors and related optoelectronic devices grown by metal organic vapor phase epitaxy”, Doctoral Dissertation of NCKU, 2008.
    [7] K. A. Wang, Yu Cao, John Simon, J. Zhang, Alexander Mintairov, James Merz, Douglas Hall, Thomas Kosel, and Debdeep Jena. Appl. Phys. Lett., Vol. 89, pp. 162110, 2006.
    [8] M. Kuball, Surf. Interface Anal., Vol. 31, pp. 987, 2001.
    [9] Y. Nanishi, Y. Saito, T. Yamaguchi, T. Araki, T. Miyajima, and H. Naoi, phys. stat. sol., Vol. 6, pp. 1487, 2003.
    [10] G. Kaczmarczyk et al. , Appl. Phys. Lett., Vol. 76, pp. 2122, 2000.
    [11] A. J , M. C. Evoy , W. Gissler , J. Appl. Phys. , Vol. 53, pp. 1251 ,1982.
    [12] K. Fukumi, A. Chayahara, M. Makihara, K. Fujii, J. Hayakawa, , M. Satou, Appl. Phys. Lett., Vol 64, pp. 3410, 1994.
    [13] Reeves GK., Solid- State Electron, Vol. 23, pp. 487, 1980.
    [14] H.H. Berger, Solid-State Electron, Vol.15, pp. 145, 1972.
    [15]S.S. Cohen and G.Sh. Gildenblat, VLSI Electronics, Vol.13, pp. 115, 1986.
    [16] J. Klootwijk, Philips Research Labs., private communication.
    [17] Rohit Khanna, B. P. Gila, L. Stafford, and S. J. Pearton, Appl. Phys. Lett., Vol. 90, pp. 162107, 2007.
    [18] S. M. Sze, “Physics of Semiconductor Devices”, 1981 (New York: Wiley)

    Chapter 4
    [1] S. J. Chang, C. F. Shen, W. S. Chen, T. K. Ko, C. T. Kuo, K. H. Yu,
    S. C. Shei, and Y. Z. Chiou, Electrochemical and Solid-State Letters, Vol. 10, pp. H175, 2007.
    [2] Chun-Kai Wang, “The study of nitride-based optoelectronic and microwave devices”, Doctoral Dissertation of NCKU, 2005.
    [3] Y. Z. Chiou, S. J. Chang, Y. K. Su, IEEE Trans. Electron Dev., Vol. 03, pp. 01, 2003.
    [4] Fabio Sacconi, Aldo Di Carlo, P. Lugli, and Hadis Morkoç, IEEE Trans. Electron Dev., Vol. 48, pp. 450, 2001.
    [5] Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, Appl. Phys. Lett. Vol. 63, pp. 1214, 1993.
    [6] F. Wu, B. P. Keller, S. Keller, D. Kapolnek, P. Kozodoy, S. P. Denbaars, and U. K. Mishra, Appl. Phys. Lett. Vol.69, pp. 1438, 1996.
    [7] Hai Lu, William J.Schaff, and Lester F. Eastman, J. Appl. Phys., Vol. 96, pp. 3577, 2004.
    [8] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki, Y. Nanishi, Phys. Satat. Sol. (c). Vol. 07, pp. 2031, 2003.
    [9] C.L. Wu, C.-H. Shen, H.Y. Chena, S.-J. Tsai, H.W. Lin, H.M. Lee, S. Gwo, T.-F. Chuang, H.-S. Chang, T.M. Hsu, J. Cry. Grow. Vol. 288, pp. 247, 2006.
    [10] W.-H. Lan, K.-C. Huang and K.F. Huang, Electronics letters 6th, Vol. 42, pp. 14, 2006.
    [11] Chi-Fan Chen, Chung-Lin Wu, and Shangjr Gwo, Appl. Phys. Lett. Vol. 89, pp. 252109, 2006.
    [12] Ching-Ting Lee, Yow-Jon Lin, and Day-Shan Liu, Appl. Phys. Lett.Vol. 79, pp. 2573, 2001.
    [13] L. Cao, Z. L. Xie, B. Liu, X. Q. Xiu, R. Zhang, Y. D. Zheng, J. Vac. Sci. Technol. B., Vol. 25, pp 199, 2007.
    [14] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto, J. Appl. Phys., Vol. 94, pp 2779, 2003.

    Chapter 5
    [1] Yu-Syuan Lin, Shun-Hau Koa, Chih-Yuan Chan, and Shawn S. H. Hsu, Appl. Phys. Lett., Vol. 90, pp. 142111, 2007.
    [2] Je Won Kim , Kyu Han Lee, Sangsu Hong, Thin Solid Film, Vol. 515, pp. 4405, 2007.
    [3] T. Yamaguchi, C. Morioka, K. Mho, M. Hori, T. Araki and Y. Nanishi, IEEE CNF, pp 214-219, 2003.
    [4] L.C. Chen, Eur. Phys. J. Appl. Phys., Vol. 35, pp. 13, 2006.

    下載圖示 校內:2009-07-08公開
    校外:2009-07-08公開
    QR CODE