簡易檢索 / 詳目顯示

研究生: 陳俞仲
Chen, Yu-Chung
論文名稱: 錫酸鹽M2SnO4 (M=Ca, Sr, Zn)螢光粉之合成與螢光特性研究
Synthesis and photoluminescent properties of europium-activated M2SnO4 (M=Ca, Sr, Zn) phosphors
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 122
中文關鍵詞: 錫酸鹽螢光粉光致發光
外文關鍵詞: Stannate, Phosphor, Photoluminescence
相關次數: 點閱:82下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究是以錫酸鹽類之M2SnO4 (M = Ca, Sr, Zn) 材料為對象,以三價或二價Eu離子摻雜,分別以固相反應法及溶膠凝膠法製備成螢光粉末,探討其材料合成與螢光性質。
      以高能震動球磨法所製備之Ca2SnO4 粉末,其結晶溫度約在1100℃,Ca2SnO4: Eu3+主要的發光譜線位於波長618 nm 處,並展現出明亮且顯著的紅光,其躍遷是來自於5D0 → 7F2 的電偶極躍遷,顯示活化中心Eu3+離子,並未佔據Ca2SnO4 主體晶格的對稱中心位置。當Eu3+離子摻雜濃度增加到7 mol% 時,可得最佳之發光強度,並在大於7 mol% 之後,由於Eu2Sn2O7雜相出現而開始消減。XRD 分析結果與(5D0 → 7F2 / 5D0 → 7F1)螢光強度的比值均顯示,當Eu濃度增加時,Eu3+離子所佔據位置的對稱性降低,使得Ca2SnO4: xEu 的發光的紅光色純度更高。
      以高能震動球磨法所製備之Sr2SnO4 粉末,在767℃以上即有Sr2SnO4相合成,當煆燒溫度增加到1000℃,可獲得單一相的Sr2SnO4, Sr2SnO4: Eu3+主要的發光譜線位於619 nm 處,並主導整體光譜發出顯著而明亮紅光是來自於5D0 → 7F2的電偶極躍遷,受到晶格位置對稱性的影響,其強度遠高於5D0 → 7F1躍遷所產生的光譜線,因此可推測Eu3+離子在晶格中所佔據並非具有中心幾何對稱的位置。由於Eu3+離子在晶格中的位置為C4v,使得禁戒躍遷5D0 → 7F0得以出現,(5D0 → 7F0 / 5D0 → 7F1) 躍遷強度的比值達到4.18。當Eu3+離子摻雜濃度增加到5 mol% 時,可得最佳之發光強度,並在大於5 mol% 之後由於濃度淬減而開始消減。當煆燒溫度由1100℃增加到1300℃,粉末顆粒的形狀由均勻粒狀分佈逐漸地轉變為球狀,並連結成環形分佈,其原因為足夠的高溫,使得不同晶粒間產生了燒結現象而彼此連結附聚並使螢光強度降低。
      以溶膠凝膠法製備之Sr2SnO4 前導物粉末經800℃煆燒10 小時,可得單一相之Sr2SnO4結晶,其結晶溫度較固態反應法所需溫度低。溶膠凝膠法製備之Sr2SnO4:5%Eu3+ 螢光粉末CTB位於315 nm,相較於固相反應法所得螢光粉之CTB位置(347 nm),發生藍位移達32 nm,其原因是由於不同製程造成晶粒變小及能隙變大所致。禁戒躍遷5D0 → 7F0的躍遷螢光強度大幅降低,(5D0 → 7F0 / 5D0 → 7F1)比值為1.29,是由於較差的結晶性所致。主體晶格的結晶性、粒徑、形貌有所改變時,最佳摻雜濃度也會隨之改變,當Eu3+離子摻雜濃度為3 mol% 時,可得最佳之發光強度。
      以高能機械球磨固相反應法製備Zn2SnO4粉末,經900℃煆燒3小時後可得反尖晶石結構之Zn2SnO4單一結晶相。由波長347 與374 nm激發所得之發射光譜線均為一寬大的譜線,是來自Eu2+離子4f65d1 → 4f7的躍遷,由中心位置分別在507,564,616 nm 的三個光譜所共同組成,色度座標x,y值約為(0.36,0.47),發黃綠光。當Eu2+離子摻雜濃度增加到3 mol% 時,可得最佳發光強度。以464 nm波長的可見光激發Zn2SnO4:Eu螢光粉末,可發現來自Eu3+離子的發光,顯示仍有少量Eu3+離子在Zn2SnO4主體晶格中扮演活化者的角色。煆燒溫度的增加使得Eu3+ → Eu2+的還原反應快速進行,同時大幅提高Zn2SnO4: Eu2+螢光粉的發光效率。Zn2SnO4: 3%Eu螢光粉在11% 氫氣/(氮氣+氫氣)之還原氣氛中作後續熱處理後,除還原Eu3+離子外,亦改變Eu2+的發光機制,整體光譜分佈變窄,由中心位置在507 nm 處之發光構成,色度座標x,y值約為(0.26,0.49),發綠光。雜質元素Nd 的摻雜,對Zn2SnO4: Eu2+的發光強度有增強的效果,在Nd 的添加量為2 mol% 時可得最佳發光強度。此外,在添加了Nd3+離子後,則出現了長餘暉的放光的磷光現象。

      The synthesis and photoluminescent (PL)properties of calcium, strontium and zinc stannate crystals doped with europium grown by mechanically activated in a high energy vibro-mill and sol-gel method have been investigated.
      The characteristics of Ca2SnO4: Eu3+ phosphors were found to depend on the amounts of europium ions. The calcined powders emit bright red luminescence centered at 618nm due to 5D0→7F2 electric dipole transition. Both XRD data and the emission ratio of (5D0→7F2)/( 5D0→7F1) reveal that the site symmetry of Eu3+ ions decreases with increasing doping concentration. The maximum PL intensity has been obtained for 7 mol% concentration of Eu3+ in Ca2SnO4.
      The characteristics of Sr2SnO4:Eu3+ powders were found to depend on the heating conditions and the amounts of europium ions. In the SEM morphology observations, the shape of grains was changed gradually from granular to circularity-like as the calcination temperature increasing from 1000℃ to 1300℃. The calcined powders emit bright red luminescence centered at 619nm due to the electric dipole transition of 5D0→7F2, and the powders fired at 1200℃ were found to have the maximum PL intensity. The maximum PL intensity was obtained for 5 mol% concentration of Eu3+ in Sr2SnO4.
      Single phase Sr2SnO4 crystal was formed after heating Sr2SnO4 precusor at 800℃ for 10h by solgel method. The change of crystallinity and grain size will affect the luminescent properties.
      One broaden emission band from the Zn2SnO4: Eu2+ phosphor calcined at 1000℃ to 1200℃ for 3h in air is clearly observed at 525nm under 374nm UV ray excitation. The emission band from Zn2SnO4: Eu3+ can also be observed under 464nm-ray excitation. The reduction of Eu3+→Eu2+ was firstly discovered in stannate phosphor of Zn2SnO4: Eu synthesized in air condition. Post annealing in 11% (H2/H2+N2) atmosphere reduced the Eu3+ ions and changed the emission spectra. The CIE chromaticity is (0.26, 0.49), shows green light. Codoping Nd ions will enhance the emission intensity and the maximum is 2% Nd concentration. Codoping Nd ions also induced fluorescence.

    目錄 第一章 緒論-----------------------------------------------------------------1 1-1 前言-----------------------------------------------------------------1 1-2 研究動機與目的-------------------------------------------------------2 第二章 理論基礎與文獻回顧---------------------------------------------------4 2-1 螢光材料簡介---------------------------------------------------------4 2-2 螢光材料的分類與應用-------------------------------------------------6 2-2-1 螢光材料的分類-------------------------------------------------------6 2-2-2 激發源種類及其應用---------------------------------------------------6 2-3 發光物理原理---------------------------------------------------------7 2-3-1 螢光體能量的激發與吸收-----------------------------------------------7 2-3-2 能量轉換機構–螢光與磷光--------------------------------------------10 2-3-3 螢光放射------------------------------------------------------------12 2-3-4 非輻射轉換----------------------------------------------------------12 2-4 影響發光行為與效率主要的因素----------------------------------------14 2-4-1 主體晶格效應(Host effect) ------------------------------------------14 2-4-2 熱消減(Thermal quenching) ------------------------------------------16 2-4-3 濃度淬滅效應 (Concentration quenching effect) ----------------------16 2-4-4 金屬離子間電子轉移的機制--------------------------------------------19 2-5 螢光材料之組成與設計------------------------------------------------20 2-5-1 主體晶格之選擇------------------------------------------------------20 2-5-2 活化劑的選擇--------------------------------------------------------21 2-5-3 抑制劑的選擇--------------------------------------------------------21 2-6 稀土離子的發光特性--------------------------------------------------23 2-7 螢光特性的量測------------------------------------------------------25 2-7-1 激發光譜與放射光譜測量----------------------------------------------25 2-7-2 螢光衰減的量測------------------------------------------------------25 2-7-3 色度座標------------------------------------------------------------27 2-8 螢光體製程----------------------------------------------------------29 2-8-1 固相反應法----------------------------------------------------------29 2-8-2 溶膠凝膠法----------------------------------------------------------30 2-8-3 水熱法(Hydrothermal method) ----------------------------------------31 2-8-4 共沈法(Co-precipitation method) ------------------------------------31 2-8-5 其他製程------------------------------------------------------------31 2-9 文獻回顧------------------------------------------------------------32 2-9-1 M2SnO4 (M = Ca, Sr, Zn)晶體研究簡介---------------------------------32 2-9-2 錫酸鹽類於螢光材料上的應用------------------------------------------34 第三章 實驗方法------------------------------------------------------------37 3-1 實驗流程------------------------------------------------------------37 3-2 實驗方法------------------------------------------------------------37 3-2-1 固相反應法之Ca2SnO4:Eu及Sr2SnO4:Eu螢光粉製備------------------------37 3-2-2 溶膠凝膠法製備Sr2SnO4:Eu螢光粉--------------------------------------38 3-3 固相反應法之Zn2SnO4:Eu, Nd螢光粉製備--------------------------------38 3-4 成分與結構分析------------------------------------------------------39 3-4-1 X 光繞射(XRD)分析---------------------------------------------------39 3-4-2 掃描式電子顯微鏡(SEM)分析-------------------------------------------39 3-4-3 穿透式電子顯微鏡(TEM)分析-------------------------------------------39 3-4-4. 熱差/熱重(DTA /TGA)分析---------------------------------------------39 3-5 性質量測------------------------------------------------------------40 3-5-1 螢光光譜儀 (Photoluminescence spectrometer, PL光譜儀)---------------40 3-5-2 紫外-可見光譜儀(UV-Visbile spectrometer) ---------------------------40 3-5-3 色度座標分析( Analysis of C.I.E. chromaticity diagrams)-------------40 第四章 結果與討論----------------------------------------------------------44 4-1 以固相反應法合成Ca2SnO4螢光粉之研究---------------------------------44 4-1-1 熱差-熱重(DTA/TGA)分析----------------------------------------------44 4-1-2 X光繞射(XRD)分析----------------------------------------------------46 4-1-3 掃瞄式電子顯微鏡(SEM)分析-------------------------------------------51 4-1-4 紫外光-可見光吸收光譜-----------------------------------------------51 4-1-5 螢光光譜分析--------------------------------------------------------51 4-1-6 結論----------------------------------------------------------------53 4-2 以固相反應法及溶膠凝膠法合成Sr2SnO4螢光粉之研究---------------------61 4-2-1 固相反應法----------------------------------------------------------61 4-2-1-1 熱差-熱重(DTA/TGA)分析----------------------------------------------61 4-2-1-2 X光繞射(XRD)分析----------------------------------------------------63 4-2-1-3 掃瞄式電子顯微鏡(SEM)分析-------------------------------------------66 4-2-1-4 紫外光-可見光吸收光譜-----------------------------------------------66 4-2-1-5 螢光光譜分析--------------------------------------------------------70 4-2-2 溶膠凝膠法----------------------------------------------------------75 4-2-2-1 熱差-熱重(DTA/TGA)分析----------------------------------------------75 4-2-2-2 X光繞射(XRD)分析----------------------------------------------------77 4-2-2-3 微結構觀察----------------------------------------------------------79 4-2-2-4 螢光光譜分析--------------------------------------------------------79 4-2-3 結論----------------------------------------------------------------80 4-3 以固相反應法合成Zn2SnO4螢光粉之研究---------------------------------86 4-3-1 Zn2SnO4 相合成------------------------------------------------------86 4-3-2 掃瞄式電子顯微鏡(SEM)分析-------------------------------------------87 4-3-3 紫外光-可見光吸收光譜-----------------------------------------------87 4-3-4 螢光光譜分析--------------------------------------------------------92 4-3-5 不同熱處理溫度之Eu3+ → Eu2+----------------------------------------99 4-3-6 還原氣氛對Zn2SnO4: Eu 螢光特性之影響-------------------------------102 4-3-7 Nd離子摻雜對Zn2SnO4: Eu 螢光特性之影響-----------------------------104 4-3-8 結論---------------------------------------------------------------109 4-4 綜合討論-----------------------------------------------------------110 4-4-1 不同主體晶格對Eu3+離子PL 特性之影響--------------------------------110 4-4-2 色度座標分析-------------------------------------------------------110 第五章 結論---------------------------------------------------------------115 參考文獻--------------------------------------------------------------------117 圖目錄 圖1-1 (a) Structure of white LED consisting of a blue LED chip and a phosphor-containing epoxy encapsulating the semiconductor die. (b) Wavelength-converting phosphorescence and blue luminescence.------------------------------3 圖1-2 Basic cell structure of PDP.-----------------------------------------3 圖2-1 The different ways of energy transfer in solids. --------------------9 圖2-2 Configurational coordinate diagram. The ground state (g) has the equilibrium distance R0. The excited state (e) has the equilibrium distance R’0.---------------------------------------------- -----------------------------9 圖2-3 The Jablonski diagram, which explains photophysical processes in molecular systems. (1) photoabsorption; (2) vibrational relaxation; (3) internal conversion; (4) intersystem crossing; (5) radiative transition and (6) nonradiative transition. ----------------------------------------------------11 圖2-4 The diagram of Stokes shift. ---------------------------------------13 圖2-5 The influence of coupling on emission spectra. ---------------------13 圖2-6 Nonradiative transitions in the configurational coordinate diagram: (a) strong coupling; (b) weak coupling; (c) combination of both. ------------15 圖2-7 Schematic diagram of quenching temperature(Tq). --------------------17 圖2-8 A schematic illustration of thermal quenching model. ---------------17 圖2-9 Energy transfer to a poison (quenching site) indicate concentration quenching. ------------------------------------------------------------------18 圖2-10 Energy levels of trivalent lanthanide ions. ------------------------24 圖2-11 Spetroscopic measurement apparatus. --------------------------------26 圖2-12 CIE Chromaticity diagram. ------------------------------------------28 圖2-13 Crystal structure of C2SnO4. ---------------------------------------33 圖2-14 Crystal structure of Sr2SnO4. --------------------------------------33 圖2-15 Crystal structure of spinel.----------------------------------------36 圖3-1 The flow chart of synthesis of M2SnO4:Eu (M = Ca, Sr, Zn) phosphor powders by modified solid state reaction method.-----------------------------41 圖3-2 The flow chart of synthesis of Sr2SnO4:Eu phosphors by sol-gel method. ---------------------------------------------------------------------42 圖3-3 The flow chart of synthesis of Zn2SnO4:Eu, Nd phosphor powders by modified solid state reaction method-----------------------------------------43 圖4-1-1 DTA-TGA analysis of Ca2SnO4 powder mixtures. -----------------------45 圖4-1-2 The X-ray diffraction patterns of the Ca2SnO4 powders calcined at different temperatures: (a) 900˚C; (b) 1000˚C; (c) 1100˚C; (d) 1200˚C and (e) 1300˚C for 3h. ---------------------------------------------------------48 圖4-1-3 The X-ray diffraction patterns of the Ca2SnO4: xEu calcined at 1200˚C for 3h: (a) x=0; (b) x=3%; (c) x=5%; (d) x=7% and (e) x=10%.-----------------49 圖4-1-4 The Eu3+ content variation of the Ca2SnO4: xEu lattice constant.----50 圖4-1-5 SEM micrographs of Ca2SnO4 doped with 3 mol% Eu powders calcined at (a) 1100, (b) 1200 and (c) 1300˚C for 3h in air.----------------------------55 圖4-1-6 Diffuse reflectance spectrum of Ca2SnO4: 7%Eu phosphor at room temperature, in the solid state. The inset shows the amplified spectrum in the range from 380 to 480 nm. ---------------------------------------------------56 圖4-1-7 300 K PL excitation spectrum of Ca2SnO4: 7%Eu3+ phosphor calcined at 1200˚C monitored at 618 nm. The sharp lines depicted from 1 to 7 are assigned to transitions between the ground 7F0 level and the excited 5HJ, 5D4, 5GJ, 5L6, 5D3,2,1 levels, respectively.------------------------------------------------57 圖4-1-8 300 K PL spectrum of Ca2SnO4: 7% Eu3+ phosphor calcined at 1200˚C under 395 nm excitation. ----------------------------------------------------58 圖4-1-9 Effects of concentration on PL intensity (I) and emission ratio of (5D0→7F2)/( 5D0→7F1) (II) for Ca2SnO4: xEu phosphors. ---------------------59 圖4-1-10 Chromaticity diagram indicating the difference of hues of Ca2SnO4:xEu, NTSC green, NTSC red, and NTSC blue phosphors (NTSC = National Television Standard Color).---------- 60 圖4-2-1 DTA-TGA analysis of Sr2SnO4 powder mixtures. -----------------------62 圖4-2-2 The X-ray diffraction patterns of the Sr2SnO4: doped with 5 mol% Eu calcined at different temperature: (a) 800˚C, (b) 950˚C, (c) 1000˚C, (d) 1100˚C, (e) 1200˚C and (f) 1300˚C for 3h. -------------------------------------64 圖4-2-3 The X-ray diffraction patterns of the Sr2SnO4: xEu calcined at 1200˚C for 3h: (a) x=0; (b) x=5%; (c) x=7% and (d) x=10%.---------------------------65 圖4-2-4 SEM micrographs of Sr2SnO4:xEu powders calcined at 1200˚C for 3h in air: (a) x = 0; (b) x = 5% and (c) x = 10%.----------------------------------67 圖4-2-5 SEM micrographs of Sr2SnO4 doped with 5 mol% Eu powders calcined at (a) 1000, (b) 1100, (c) 1200 and (d) 1300˚C for 3h in air. -----------------68 圖4-2-6 Diffuse reflectance spectrum of Sr2SnO4:5%Eu phosphor at room temperature, in the solid state. The inset shows the amplified spectrum in the range from 380 to 480 nm. ---------------------------------------------------69 圖4-2-7 300 K PL excitation and emission spectra of Sr2SnO4 doped with 5 mol% Eu calcined at 1200˚C for 3 h. ----------------------------------------------72 圖4-2-8 The PL intensity versus Eu concentration. --------------------------73 圖4-2-9 The dependences between the relative emission intensity and calcination temperature of Sr2SnO4 powders doped with 5mol% Eu. -------------74 圖4-2-10 DTA-TGA analysis of Sr2SnO4 precursors. ----------------------------76 圖4-2-11 The X-ray diffraction patterns of the Sr2SnO4 precursor calcined at different temperatures: (a) 700˚C; (b) 800˚C; (c) 900˚C; (d) 1000˚C and (e) 1200˚C for 10h. -------------------------------------------------------------78 圖4-2-12 Sol-gel synthesis Sr2SnO4 powders: (a) SEM micrograph; (b) TEM picture and (c) SAD. ---------------------------------------------------------82 圖4-2-13 Relative PLE spectrum monitored at 617 nm and diffuse reflectance spectrum of Sr2SnO4:5%Eu by sol-gel method.-----------------------------------83 圖4-2-14 Relative PL spectra of Sr2SnO4:5%Eu phosphors by solid state reaction (solid line) and sol-gel method (dash line). The inset shows the amplified spectra of 5D0 → 7F0 transition. --------------------------------------------84 圖4-2-15 Effects of concentration on PL intensity for Sr2SnO4: xEu phosphors by sol-gel method. -----------------------------------------------------------85 圖4-3-1 The X-ray diffraction patterns of the Zn2SnO4 powders calcined at different temperatures: (a) 800˚C; (b) 900˚C; (c) 1000˚C; (d) 1100˚C and (e) 1200˚C for 3h. ----------------------------------------------------------88 圖4-3-2 The X-ray diffraction patterns of the Zn2SnO4: xEu calcined at 1200˚C for 3h: (a) x=0; (b) x=1%; (c) x=3%; and (d) x=5%.---------------------------89 圖4-3-3 SEM micrographs of Zn2SnO4 doped with 3 mol% Eu powders calcined at (a) 1000, (b) 1100 and (c) 1200˚C for 3h in air.----------------------------90 圖4-3-4 Diffuse reflectance spectrum of (a)Zn2SnO4 powders and (b) Zn2SnO4:3%Eu phosphors at room temperature, in the solid state.------------------------91 圖4-3-5 300 K PL spectrum of Zn2SnO4: 3% Eu2+ phosphor calcined at 1200˚C under 377 nm excitation fit to three Gaussians. -----------------------------94 圖4-3-6 Schematic energy level diagram of Eu2+ as a function of the crystal field strength △. ----------------------------------------------------------95 圖4-3-7 300 K PL excitation spectrum of Zn2SnO4: 3%Eu2+ phosphor calcined at 1200˚C monitored at 525 nm. ------------------------------------------------96 圖4-3-8 Schematic energy level diagram of Eu2+ split by the crystal field.--97 圖4-3-9 The dependence of PL intensity with Eu concentration.---------------98 圖4-3-10 The PL spectra of Zn2SnO4: 3%Eu under 377 nm UV ray excitation calcined at different temperatures: (a) 1200˚C (b) 1100˚C (c) 1000˚C. ----100 圖4-3-11 The PL spectra of Zn2SnO4: 3%Eu under 464 nm-ray excitation calcined at different temperatures: (a) 1200˚C (b) 1100˚C (c) 1000˚C. -------------101 圖4-3-12 The PL spectra of 1200˚C calcined Zn2SnO4: 3%Eu post annealed in 11% H2/(N2+ H2) atmosphere for 2h at different temperatures: (a) as calcined (b) 400˚C (c) 600˚C. The inset shows the amplified spectrum of Eu3+ ions. --------103 圖4-3-13 The PL spectra Zn2SnO4: Ndx,Eu0.03 phosphors under 464 nm-ray excitation: x = 0.003, 0.005, 0.01, 0.02 and 0.03. --------------------------105 圖4-3-14 The PL spectra Zn2SnO4: Ndx,Eu0.03 phosphors under 377 UV ray excitation: x = 0.003, 0.005, 0.01, 0.02 and 0.03. --------------------------106 圖4-3-15 The decay curves of Zn2SnO4: Ndx,Eu0.03 phosphors: x = 0.005, 0.01 and 0.02. -------------------------------------------------------------------107 圖4-3-16 Luminescence after-glow process via a trap in an energy band scheme. ------------------------------------------------------------------------------108 圖4-4-1 PL spectra of (a) Ca2SnO4:7%Eu, (b) Sr2SnO4:5%Eu (by solid state reaction) and (c) Sr2SnO4:3%Eu (by sol-gel method) excited by CTB.-------------------------------------------------------------------------------------------112 圖4-4-2 Chromaticity diagram indicating the difference of hues of (a) Ca2SnO4: 7%Eu, (b) Sr2SnO4: 5%Eu prepared by solid state reaction, (c) Sr2SnO4: 3%Eu prepared by sol-gel method, (d) as calcined Zn2SnO4: 3%Eu, (e) sample (d) post annealed in 11% H2/(N2+H2) at 600˚C for 2h and (f) Zn2SnO4: Nd2%,Eu3%. NTSC green, NTSC red, and NTSC blue phosphors (NTSC = National Television Standard Color).-------------------------------------------------------------114 表目錄 表2-1 Phosphor devices.----------------------------------------------------5 表2-2 Anions that can be used to form Phosphors.--------------------------21 表2-3 Cations that can be used to form phosphors.-------------------------22 表2-4 Cations that can be used as activator center.-----------------------22 表2-5 Cations with unpaired spins which function as quenchers of luminescence.----------------------------------------------------------------22 表2-6 Unit cell parameters of Ca2SnO4, Sn2SnO4 and Zn2SnO4.---------------36 表4-1 Luminescent parameters of Ca2SnO4:7%Eu, Sr2SnO4:5%Eu (by solid state reaction), and Sr2SnO4:3%Eu (by sol-gel method).----------------------------113

    1. S. Rauf and M. J. Kushner, J. Appl. Phys. 85(7) (1999) 3460.
    2. L. D. Carlos, V. de Zea Bermudez and R. A. Sá Ferreira, J. Non-Cryst. Solids 247 (1999) 203.
    3. P. Guo, F. Zhao, G. Li, F. Liao, S. Tian and X. Jing, J. Lumin. 105 (2003) 61.
    4. R. C. Ropp, “Luminescence and the Solid State”, Elsevier, Amsterdam, (1991) p. 291.
    5. E. N. Harvey, “A history of luminescence”, American philosophical society, Philadelphia, 1957, p. 18.
    6. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 3.
    7. C. Feldmann, T. Jüstel, C. R. Ronda and P. J. Schmidt, Adv. Funct. Mater. 13 (2003) 511.
    8. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 4.
    9. 楊俊英著,“電子產業用螢光材料之應用調查”.工研院,民國81年.
    10. J. A. DeLuca, J. Chem. Edu. 57 (1980) 541.
    11. G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 13.
    12. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 64.
    13. Ropp, R. C., “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands, 1991, p. 245.
    14. Henderson, B. and Imbusch, G. F., “Optical spectroscopy of inorganic solids”, Clarendon, Oxford, 1989, Chapter 5.
    15. Kitai, A. H., “Solid state luminescence”, Chapman & Hall, Inc., UK, 1993, p. 30.
    16. J. H. van Vleck, J. Phys. Chem. 41 (1937) 67.
    17. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9 (1954) 766.
    18. B. R. Judd, Phys. Rev. 127 (1962) 750.
    19. G. S. Ofelt, J. Chem. Phys. 37 (1962) 511.
    20. K. Jankowski and L. Smentek-Mielczarek, Mol. Phys. 60 (1987) 1211.
    21. L. Smentek-Mielczarek and B. A. Hess Jr., Phys. Rev. B 36 (1987) 1811.
    22. M. C. Downer, In “Laser spectroscopy of solids II” (ed. W. M. Yen), Springer, Berlin, 1989, p. 29.
    23. A. H. Kitai, “Visible luminescence – Solid state materials & applications”, Chapman & Hall, London, 1992, Chapter 1.
    24. G. Blasse, J. Chem. Phys., 48 (1968) 3108.
    25. J. A. DeLuca, J. Chem. Edu. 57 (1980) 541.
    26. M. Tabei and S. Shionoya, Jpn. J. Appl. Phys. 14 (1975) 240.
    27. S. Kuboniwa, H. Kawai T. Hoshina, Jpn. J. Appl. Phys. 19 (1980) 1647.
    28. A. H. Kitai, Solid state luminescence, Chapman & Hall, Inc., UK, 1993, p. 38.
    29. G. Blasse, Structure and bonding, vol.76, Springer Verlag, Heidelberg, 1991.
    30. D. Boyer, G. Bertrand-Chadeyron and R. Mahiou, Opt. Mater. 26 (2004) 101.
    31. T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc. 143 (1996) 2670.
    32. H. Yamammoto. and T. Matsuzawa, J. Lumin. 72-74 (1997) 287.
    33. S. S. Sanaye, B. S. Dhabekar, R. Kumar, S. N. Menon, S. S. Shinde, T. K. G. Rao. and B. C. Bhatt, J. Lumin. 105 (2003) 1.
    34. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands, 1991, Chapter 8.
    35. C. S. Shi and Q. Su, “The chemistry and physics of abnormal valence rare elements”, Science Press, Beijing, 1994.
    36. G. H. Dieke, “Spectra and energy levels of rare earth ions in crystals”, Interscience, 1968.
    37. Shionoya, S., and Yen, W. M., Phosphor handbook, CRC press, 1999, p. 685.
    38. G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 38.
    39. M. Ikeda, “Fundamentals of colour engineering”, Asakura Bookstore, 1980, p. 244.
    40. F. J. Avella, J. Electrochem. Soc. 113 (1966) 1225.
    41. R. Jagannathan, S. P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, Bull. Electrochem. 4 (1988) 597.
    42. K. L. Kelly, J. Opt. Soc. Am. 33 (1943) 627.
    43. R. Morimo and K. Matae, Mater. Res. Bull. 24 (1989) 175.
    44. J. Lin, Mater. Sci. Enger. B64 (1999) 73.
    45. P. K. Sharma, R. Nass and H. Schmidt, Opt. Mater. 10 (1997)161.
    46. L. Xie, and A. Ncormack, J. Solid State Chem. 83 (1989) 282.
    47. C. Yoon and S. Kang, J. Mater. Res. 16(4) (2001) 1210.
    48. Gomi, M., Jpn. J. Appl. Phys. 35 (1996) 1798.
    49. W. Jia, H. Yuan, L. Lu, H. Liu and W. M. Yen, J. Lumin. 76-77 (1998) 424.
    50. W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, J. Lumin. 83-84 (1999) 465.
    51. X. Ouyang, A. H. Kitai and Xiao, J. Appl. Phys. 79 (1996) 3229.
    52. V. Bondar, Mater. Sci. Engin. B69-70 (2000) 505.
    53. M. Trömel, Z. Anorg. Allg. Chem., 371 (1969) 237.
    54. Y. Tanaka, J. Chem. Soc. Jpn. 62 (1941) 199.
    55. G. Pfaff, Mater. Sci. Engin. B 33 (1995) 156.
    56. Y. Hinatsu, J. Solid State Chem. 130 (1997) 250.
    57. M. A. Green, K. Prassides, P. Day and J. K. Stalick, J. Chem. Soc., Faraday Trans. 92 (1996) 2155.
    58. G. Pfaff, J. Mater. Sci. 35 (2000) 3017.
    59. T. Hashemi, H. M. Al-Allak, J. Illingwsorth, A. W. Brinkman and F. Woods, Mater. Sci. Lett. 9 (1990) 776.
    60. N. Nikolić, T. Srećković and M. M. Ristić, J. Europ. Ceram. Soc. 21 (2001) 2071.
    61. C. Wang, X. Wang, J. Zhao, B. Mai, G. Sheng, P. Peng and J. Fu, J. Mater. Sci. 37 (2002) 2989.
    62. T. Minami, T. Kakumu, K. Shimokawa and S. Takata, Thin Solid Films 317 (1998) 318.
    63. T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan and X. Wu, J. Vac. Sci. Technol. A 18(6) (2000) 2646.
    64. S. H. Wei and S. B. Zhang, Phys. Rev. B 63 (2001) 045112.
    65. D. L. Young, D. L. Williamson and T. J. Coutts, J. Appl. Phys. 91 (2002) 1464.
    66. D. L. Young, H. Moutinho, Y. Yan and T. J. Coutts, J. Appl. Phys. 92 (2002) 310.
    67. I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev and T. Donchev, J. Solid State Chem. 128 (1997) 305.
    68. W. J. Moon, J. H. Yu and G. M. Choi, Sens. Actuators B 80 (2001) 21.
    69. J. H. Yu and G. M. Choi, J. Electrochem. Soc. 148 (2001) G307.
    70. G. Blasse, Philips Res. Repts. 23 (1968) 344.
    71. A. J. H. Macke, J. Solid State Chem. 18 (1976) 337.
    72. G. Blasse, G. A. M. Dalhoeven, J. Choisent and F. Studer, J. Solid State Chem. 39 (1981) 195.
    73. P. T. M. Chau, K. H. Ryu and C. H. Yo, J. Mater. Sci. 33 (1998) 1299.
    74. K. N. Kim, H. K. Jung, H. D. Park and D. Kim, J. Lumin. 99 (2002) 169.
    75. H. M. Yang, J. X. Shi and M. L. Gong, J. Solid State Chem. 178 (2005) 917.
    76. A. J. Smith and J. E. Welch, Acta Crystallogr., 13 (1960) 653.
    77. K. Tkacova, “Mechanical activation of minerals”, Elsevier, Amsterdam, 1989 (Translation Ludmila Komorova).
    78. R. D. Shannon, Acta Cryst. A 32 (1976) 751.
    79. R. J. D. Tilley, “Defect crystal chemistry and its applications”, Blackie, Glasgow and Landon, 1987.
    80. JCPDS No. 46-0122.
    81. M. Yin, W. Zhang, S. Xia and J. C. Krupa, J. Lumin. 68 (1996) 335.
    82. G. Blasse, “Handbook on the physics and chemistry of rare earths”, Vol. 4, (1979) p. 237.
    83. S. Shionoya and W. M. Yen, Phosphor handbook, CRC press, 1999, p. 179.
    84. A. Kaminskii, Laser Crystals, Their physics and properties, Springer, Berlin, 1990.
    85. J. Qiu, K. Miura, N. Sugimoto and K. Hirao, Non-Cryst. Solids 213&314 (1997) 266.
    86. S. A. Robbins, R. G. Rupard, B. J. Weddle, T. R. Maull and K. Gallagher Patrick, Thermochim. Acta 269/270 (1995) 43.
    87. I. A. Kamenskikh, M. A. Macdonald, V. V. Mikhailin, I. H. Munro and M. A. Terekhhin, Rev. Sci. Instrum. 63 (1992) 1447.
    88. W. T. Fu, D. Visser and D. J. W. IJdo, J. Solid Stat. Chem. 169 (2002) 208.
    89. Z. J. Kiss and H. A. Weakliem, Phys. Rev. Lett. 15 (1965) 457.
    90. B. R. Judd, J. Chem. Phys. 44 (1966) 839.
    91. G. Blasse and A. Brill, Philips Res. Repts. 21 (1966) 368.
    92. G. Blasse and A. Brill, Philips Tech. Rev. 31 (1970) 309.
    93. B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai and J. L. Lacout, J. L., J. Lumin. 39 (1987) 97.
    94. S. Kuboniwa, H. Kawai and T. Hoshina, Jpn. J. Appl. Phys. 19 (1980) 1647.
    95. B. S. Tsai, Y. H. Chang and Y. C. Chen, J. Mater. Res. 19(5) (2004) 1504.
    96. D. R. Vij, “Luminescence of solids”, Plenum press, New York and London, 1998, p. 27.
    97. M. P. Pechini, U. S. Pat. No.3 231 (1966) 328.
    98. C. P. Udawatte, M. Kakihana and M. Yoshimura, Solid State Ionics, 108 (1998) 23.
    99. T. R. N. Kutty and R. Vivekanadan, Mater. Res. Bull. 22 (1987) 1457.
    100. J. C. Boyer, F. Vertrone, J. A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B 108 (2004) 20137.
    101. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
    102. L. Sun, C. Yan, C. Liu, C. Liao, D. Li and J. Yu, J. Alloy. Compd. 275-277 (1998) 234.
    103. G. Blasse, “Luminescence of inorganic solids”, Plenum, New York, 1978, p. 457.
    104. 蘇鏘,“稀土化學”,河南科學技術出版社, 1992, p. 319.
    105. Z. W. Pei, Q. Su and Q. H. Zeng, Chin. J. Lumin. 17 (1996) 114.
    106. I. Täle, P. Külis and V. Kronghauz, J. Lumin. 20 (1979) 343.
    107. U. Madhusoodanan, M. T. Jose and A. R. Lakshmanan, Radiat. Meas. 30 (1999) 65.
    108. M. Peng, Z. Pei, G. Hong and Q. Su, Chem. Phys. Lett. 371 (2003) 1.
    109. F. C. Palilla, A. K. Levine and M. R. Tomkus, J. Electrochem. Soc. 115 (1968) 642.
    110. Y. Lin, Z. Zhang, Z. Tang, X. Wang, J. Zhang and Z. Zhang, J. Euro. Ceram. Soc. 21 (2001) 683.
    111. L. Jiang, C. Chang, D. Mao and C. Feng, Opt. Mater. 27 (2004) 51.
    112. J. Zhang, Z. Zhang, Z. Tang, Y. Tao and X. Long, Chem. Mater. 14 (2002) 3005.
    113. E. Nakawaza and T. Mochida, J. Lumin. 72-74 (1997) 236.
    114. H. Yamamoto and T. Matsuzawa, J. Lumin. 72-74 (1997) 287.
    115. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 90.

    下載圖示 校內:立即公開
    校外:2005-10-11公開
    QR CODE