| 研究生: |
陳俞仲 Chen, Yu-Chung |
|---|---|
| 論文名稱: |
錫酸鹽M2SnO4 (M=Ca, Sr, Zn)螢光粉之合成與螢光特性研究 Synthesis and photoluminescent properties of europium-activated M2SnO4 (M=Ca, Sr, Zn) phosphors |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 錫酸鹽 、螢光粉 、光致發光 |
| 外文關鍵詞: | Stannate, Phosphor, Photoluminescence |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是以錫酸鹽類之M2SnO4 (M = Ca, Sr, Zn) 材料為對象,以三價或二價Eu離子摻雜,分別以固相反應法及溶膠凝膠法製備成螢光粉末,探討其材料合成與螢光性質。
以高能震動球磨法所製備之Ca2SnO4 粉末,其結晶溫度約在1100℃,Ca2SnO4: Eu3+主要的發光譜線位於波長618 nm 處,並展現出明亮且顯著的紅光,其躍遷是來自於5D0 → 7F2 的電偶極躍遷,顯示活化中心Eu3+離子,並未佔據Ca2SnO4 主體晶格的對稱中心位置。當Eu3+離子摻雜濃度增加到7 mol% 時,可得最佳之發光強度,並在大於7 mol% 之後,由於Eu2Sn2O7雜相出現而開始消減。XRD 分析結果與(5D0 → 7F2 / 5D0 → 7F1)螢光強度的比值均顯示,當Eu濃度增加時,Eu3+離子所佔據位置的對稱性降低,使得Ca2SnO4: xEu 的發光的紅光色純度更高。
以高能震動球磨法所製備之Sr2SnO4 粉末,在767℃以上即有Sr2SnO4相合成,當煆燒溫度增加到1000℃,可獲得單一相的Sr2SnO4, Sr2SnO4: Eu3+主要的發光譜線位於619 nm 處,並主導整體光譜發出顯著而明亮紅光是來自於5D0 → 7F2的電偶極躍遷,受到晶格位置對稱性的影響,其強度遠高於5D0 → 7F1躍遷所產生的光譜線,因此可推測Eu3+離子在晶格中所佔據並非具有中心幾何對稱的位置。由於Eu3+離子在晶格中的位置為C4v,使得禁戒躍遷5D0 → 7F0得以出現,(5D0 → 7F0 / 5D0 → 7F1) 躍遷強度的比值達到4.18。當Eu3+離子摻雜濃度增加到5 mol% 時,可得最佳之發光強度,並在大於5 mol% 之後由於濃度淬減而開始消減。當煆燒溫度由1100℃增加到1300℃,粉末顆粒的形狀由均勻粒狀分佈逐漸地轉變為球狀,並連結成環形分佈,其原因為足夠的高溫,使得不同晶粒間產生了燒結現象而彼此連結附聚並使螢光強度降低。
以溶膠凝膠法製備之Sr2SnO4 前導物粉末經800℃煆燒10 小時,可得單一相之Sr2SnO4結晶,其結晶溫度較固態反應法所需溫度低。溶膠凝膠法製備之Sr2SnO4:5%Eu3+ 螢光粉末CTB位於315 nm,相較於固相反應法所得螢光粉之CTB位置(347 nm),發生藍位移達32 nm,其原因是由於不同製程造成晶粒變小及能隙變大所致。禁戒躍遷5D0 → 7F0的躍遷螢光強度大幅降低,(5D0 → 7F0 / 5D0 → 7F1)比值為1.29,是由於較差的結晶性所致。主體晶格的結晶性、粒徑、形貌有所改變時,最佳摻雜濃度也會隨之改變,當Eu3+離子摻雜濃度為3 mol% 時,可得最佳之發光強度。
以高能機械球磨固相反應法製備Zn2SnO4粉末,經900℃煆燒3小時後可得反尖晶石結構之Zn2SnO4單一結晶相。由波長347 與374 nm激發所得之發射光譜線均為一寬大的譜線,是來自Eu2+離子4f65d1 → 4f7的躍遷,由中心位置分別在507,564,616 nm 的三個光譜所共同組成,色度座標x,y值約為(0.36,0.47),發黃綠光。當Eu2+離子摻雜濃度增加到3 mol% 時,可得最佳發光強度。以464 nm波長的可見光激發Zn2SnO4:Eu螢光粉末,可發現來自Eu3+離子的發光,顯示仍有少量Eu3+離子在Zn2SnO4主體晶格中扮演活化者的角色。煆燒溫度的增加使得Eu3+ → Eu2+的還原反應快速進行,同時大幅提高Zn2SnO4: Eu2+螢光粉的發光效率。Zn2SnO4: 3%Eu螢光粉在11% 氫氣/(氮氣+氫氣)之還原氣氛中作後續熱處理後,除還原Eu3+離子外,亦改變Eu2+的發光機制,整體光譜分佈變窄,由中心位置在507 nm 處之發光構成,色度座標x,y值約為(0.26,0.49),發綠光。雜質元素Nd 的摻雜,對Zn2SnO4: Eu2+的發光強度有增強的效果,在Nd 的添加量為2 mol% 時可得最佳發光強度。此外,在添加了Nd3+離子後,則出現了長餘暉的放光的磷光現象。
The synthesis and photoluminescent (PL)properties of calcium, strontium and zinc stannate crystals doped with europium grown by mechanically activated in a high energy vibro-mill and sol-gel method have been investigated.
The characteristics of Ca2SnO4: Eu3+ phosphors were found to depend on the amounts of europium ions. The calcined powders emit bright red luminescence centered at 618nm due to 5D0→7F2 electric dipole transition. Both XRD data and the emission ratio of (5D0→7F2)/( 5D0→7F1) reveal that the site symmetry of Eu3+ ions decreases with increasing doping concentration. The maximum PL intensity has been obtained for 7 mol% concentration of Eu3+ in Ca2SnO4.
The characteristics of Sr2SnO4:Eu3+ powders were found to depend on the heating conditions and the amounts of europium ions. In the SEM morphology observations, the shape of grains was changed gradually from granular to circularity-like as the calcination temperature increasing from 1000℃ to 1300℃. The calcined powders emit bright red luminescence centered at 619nm due to the electric dipole transition of 5D0→7F2, and the powders fired at 1200℃ were found to have the maximum PL intensity. The maximum PL intensity was obtained for 5 mol% concentration of Eu3+ in Sr2SnO4.
Single phase Sr2SnO4 crystal was formed after heating Sr2SnO4 precusor at 800℃ for 10h by solgel method. The change of crystallinity and grain size will affect the luminescent properties.
One broaden emission band from the Zn2SnO4: Eu2+ phosphor calcined at 1000℃ to 1200℃ for 3h in air is clearly observed at 525nm under 374nm UV ray excitation. The emission band from Zn2SnO4: Eu3+ can also be observed under 464nm-ray excitation. The reduction of Eu3+→Eu2+ was firstly discovered in stannate phosphor of Zn2SnO4: Eu synthesized in air condition. Post annealing in 11% (H2/H2+N2) atmosphere reduced the Eu3+ ions and changed the emission spectra. The CIE chromaticity is (0.26, 0.49), shows green light. Codoping Nd ions will enhance the emission intensity and the maximum is 2% Nd concentration. Codoping Nd ions also induced fluorescence.
1. S. Rauf and M. J. Kushner, J. Appl. Phys. 85(7) (1999) 3460.
2. L. D. Carlos, V. de Zea Bermudez and R. A. Sá Ferreira, J. Non-Cryst. Solids 247 (1999) 203.
3. P. Guo, F. Zhao, G. Li, F. Liao, S. Tian and X. Jing, J. Lumin. 105 (2003) 61.
4. R. C. Ropp, “Luminescence and the Solid State”, Elsevier, Amsterdam, (1991) p. 291.
5. E. N. Harvey, “A history of luminescence”, American philosophical society, Philadelphia, 1957, p. 18.
6. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 3.
7. C. Feldmann, T. Jüstel, C. R. Ronda and P. J. Schmidt, Adv. Funct. Mater. 13 (2003) 511.
8. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 4.
9. 楊俊英著,“電子產業用螢光材料之應用調查”.工研院,民國81年.
10. J. A. DeLuca, J. Chem. Edu. 57 (1980) 541.
11. G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 13.
12. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 64.
13. Ropp, R. C., “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands, 1991, p. 245.
14. Henderson, B. and Imbusch, G. F., “Optical spectroscopy of inorganic solids”, Clarendon, Oxford, 1989, Chapter 5.
15. Kitai, A. H., “Solid state luminescence”, Chapman & Hall, Inc., UK, 1993, p. 30.
16. J. H. van Vleck, J. Phys. Chem. 41 (1937) 67.
17. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9 (1954) 766.
18. B. R. Judd, Phys. Rev. 127 (1962) 750.
19. G. S. Ofelt, J. Chem. Phys. 37 (1962) 511.
20. K. Jankowski and L. Smentek-Mielczarek, Mol. Phys. 60 (1987) 1211.
21. L. Smentek-Mielczarek and B. A. Hess Jr., Phys. Rev. B 36 (1987) 1811.
22. M. C. Downer, In “Laser spectroscopy of solids II” (ed. W. M. Yen), Springer, Berlin, 1989, p. 29.
23. A. H. Kitai, “Visible luminescence – Solid state materials & applications”, Chapman & Hall, London, 1992, Chapter 1.
24. G. Blasse, J. Chem. Phys., 48 (1968) 3108.
25. J. A. DeLuca, J. Chem. Edu. 57 (1980) 541.
26. M. Tabei and S. Shionoya, Jpn. J. Appl. Phys. 14 (1975) 240.
27. S. Kuboniwa, H. Kawai T. Hoshina, Jpn. J. Appl. Phys. 19 (1980) 1647.
28. A. H. Kitai, Solid state luminescence, Chapman & Hall, Inc., UK, 1993, p. 38.
29. G. Blasse, Structure and bonding, vol.76, Springer Verlag, Heidelberg, 1991.
30. D. Boyer, G. Bertrand-Chadeyron and R. Mahiou, Opt. Mater. 26 (2004) 101.
31. T. Matsuzawa, Y. Aoki, N. Takeuchi and Y. Murayama, J. Electrochem. Soc. 143 (1996) 2670.
32. H. Yamammoto. and T. Matsuzawa, J. Lumin. 72-74 (1997) 287.
33. S. S. Sanaye, B. S. Dhabekar, R. Kumar, S. N. Menon, S. S. Shinde, T. K. G. Rao. and B. C. Bhatt, J. Lumin. 105 (2003) 1.
34. R. C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, B. V., The Netherlands, 1991, Chapter 8.
35. C. S. Shi and Q. Su, “The chemistry and physics of abnormal valence rare elements”, Science Press, Beijing, 1994.
36. G. H. Dieke, “Spectra and energy levels of rare earth ions in crystals”, Interscience, 1968.
37. Shionoya, S., and Yen, W. M., Phosphor handbook, CRC press, 1999, p. 685.
38. G. Blasse, and B. C. Grabmaier, “Luminescent materials”, Springer Verlag, Berlin Heidelberg, 1994, p. 38.
39. M. Ikeda, “Fundamentals of colour engineering”, Asakura Bookstore, 1980, p. 244.
40. F. J. Avella, J. Electrochem. Soc. 113 (1966) 1225.
41. R. Jagannathan, S. P. Manoharan, R. P. Rao, R. L. Narayanan and N. Rajaram, Bull. Electrochem. 4 (1988) 597.
42. K. L. Kelly, J. Opt. Soc. Am. 33 (1943) 627.
43. R. Morimo and K. Matae, Mater. Res. Bull. 24 (1989) 175.
44. J. Lin, Mater. Sci. Enger. B64 (1999) 73.
45. P. K. Sharma, R. Nass and H. Schmidt, Opt. Mater. 10 (1997)161.
46. L. Xie, and A. Ncormack, J. Solid State Chem. 83 (1989) 282.
47. C. Yoon and S. Kang, J. Mater. Res. 16(4) (2001) 1210.
48. Gomi, M., Jpn. J. Appl. Phys. 35 (1996) 1798.
49. W. Jia, H. Yuan, L. Lu, H. Liu and W. M. Yen, J. Lumin. 76-77 (1998) 424.
50. W. Jia, H. Yuan, S. Holmstrom, H. Liu, and W. M. Yen, J. Lumin. 83-84 (1999) 465.
51. X. Ouyang, A. H. Kitai and Xiao, J. Appl. Phys. 79 (1996) 3229.
52. V. Bondar, Mater. Sci. Engin. B69-70 (2000) 505.
53. M. Trömel, Z. Anorg. Allg. Chem., 371 (1969) 237.
54. Y. Tanaka, J. Chem. Soc. Jpn. 62 (1941) 199.
55. G. Pfaff, Mater. Sci. Engin. B 33 (1995) 156.
56. Y. Hinatsu, J. Solid State Chem. 130 (1997) 250.
57. M. A. Green, K. Prassides, P. Day and J. K. Stalick, J. Chem. Soc., Faraday Trans. 92 (1996) 2155.
58. G. Pfaff, J. Mater. Sci. 35 (2000) 3017.
59. T. Hashemi, H. M. Al-Allak, J. Illingwsorth, A. W. Brinkman and F. Woods, Mater. Sci. Lett. 9 (1990) 776.
60. N. Nikolić, T. Srećković and M. M. Ristić, J. Europ. Ceram. Soc. 21 (2001) 2071.
61. C. Wang, X. Wang, J. Zhao, B. Mai, G. Sheng, P. Peng and J. Fu, J. Mater. Sci. 37 (2002) 2989.
62. T. Minami, T. Kakumu, K. Shimokawa and S. Takata, Thin Solid Films 317 (1998) 318.
63. T. J. Coutts, D. L. Young, X. Li, W. P. Mulligan and X. Wu, J. Vac. Sci. Technol. A 18(6) (2000) 2646.
64. S. H. Wei and S. B. Zhang, Phys. Rev. B 63 (2001) 045112.
65. D. L. Young, D. L. Williamson and T. J. Coutts, J. Appl. Phys. 91 (2002) 1464.
66. D. L. Young, H. Moutinho, Y. Yan and T. J. Coutts, J. Appl. Phys. 92 (2002) 310.
67. I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev and T. Donchev, J. Solid State Chem. 128 (1997) 305.
68. W. J. Moon, J. H. Yu and G. M. Choi, Sens. Actuators B 80 (2001) 21.
69. J. H. Yu and G. M. Choi, J. Electrochem. Soc. 148 (2001) G307.
70. G. Blasse, Philips Res. Repts. 23 (1968) 344.
71. A. J. H. Macke, J. Solid State Chem. 18 (1976) 337.
72. G. Blasse, G. A. M. Dalhoeven, J. Choisent and F. Studer, J. Solid State Chem. 39 (1981) 195.
73. P. T. M. Chau, K. H. Ryu and C. H. Yo, J. Mater. Sci. 33 (1998) 1299.
74. K. N. Kim, H. K. Jung, H. D. Park and D. Kim, J. Lumin. 99 (2002) 169.
75. H. M. Yang, J. X. Shi and M. L. Gong, J. Solid State Chem. 178 (2005) 917.
76. A. J. Smith and J. E. Welch, Acta Crystallogr., 13 (1960) 653.
77. K. Tkacova, “Mechanical activation of minerals”, Elsevier, Amsterdam, 1989 (Translation Ludmila Komorova).
78. R. D. Shannon, Acta Cryst. A 32 (1976) 751.
79. R. J. D. Tilley, “Defect crystal chemistry and its applications”, Blackie, Glasgow and Landon, 1987.
80. JCPDS No. 46-0122.
81. M. Yin, W. Zhang, S. Xia and J. C. Krupa, J. Lumin. 68 (1996) 335.
82. G. Blasse, “Handbook on the physics and chemistry of rare earths”, Vol. 4, (1979) p. 237.
83. S. Shionoya and W. M. Yen, Phosphor handbook, CRC press, 1999, p. 179.
84. A. Kaminskii, Laser Crystals, Their physics and properties, Springer, Berlin, 1990.
85. J. Qiu, K. Miura, N. Sugimoto and K. Hirao, Non-Cryst. Solids 213&314 (1997) 266.
86. S. A. Robbins, R. G. Rupard, B. J. Weddle, T. R. Maull and K. Gallagher Patrick, Thermochim. Acta 269/270 (1995) 43.
87. I. A. Kamenskikh, M. A. Macdonald, V. V. Mikhailin, I. H. Munro and M. A. Terekhhin, Rev. Sci. Instrum. 63 (1992) 1447.
88. W. T. Fu, D. Visser and D. J. W. IJdo, J. Solid Stat. Chem. 169 (2002) 208.
89. Z. J. Kiss and H. A. Weakliem, Phys. Rev. Lett. 15 (1965) 457.
90. B. R. Judd, J. Chem. Phys. 44 (1966) 839.
91. G. Blasse and A. Brill, Philips Res. Repts. 21 (1966) 368.
92. G. Blasse and A. Brill, Philips Tech. Rev. 31 (1970) 309.
93. B. Piriou, D. Fahmi, J. Dexpert-Ghys, A. Taitai and J. L. Lacout, J. L., J. Lumin. 39 (1987) 97.
94. S. Kuboniwa, H. Kawai and T. Hoshina, Jpn. J. Appl. Phys. 19 (1980) 1647.
95. B. S. Tsai, Y. H. Chang and Y. C. Chen, J. Mater. Res. 19(5) (2004) 1504.
96. D. R. Vij, “Luminescence of solids”, Plenum press, New York and London, 1998, p. 27.
97. M. P. Pechini, U. S. Pat. No.3 231 (1966) 328.
98. C. P. Udawatte, M. Kakihana and M. Yoshimura, Solid State Ionics, 108 (1998) 23.
99. T. R. N. Kutty and R. Vivekanadan, Mater. Res. Bull. 22 (1987) 1457.
100. J. C. Boyer, F. Vertrone, J. A. Capobianco, A. Speghini and M. Bettinelli, J. Phys. Chem. B 108 (2004) 20137.
101. N. Fujimura, T. Nishihara, S. Goto, J. Xu and T. Ito, J. Cryst. Growth 130 (1993) 269.
102. L. Sun, C. Yan, C. Liu, C. Liao, D. Li and J. Yu, J. Alloy. Compd. 275-277 (1998) 234.
103. G. Blasse, “Luminescence of inorganic solids”, Plenum, New York, 1978, p. 457.
104. 蘇鏘,“稀土化學”,河南科學技術出版社, 1992, p. 319.
105. Z. W. Pei, Q. Su and Q. H. Zeng, Chin. J. Lumin. 17 (1996) 114.
106. I. Täle, P. Külis and V. Kronghauz, J. Lumin. 20 (1979) 343.
107. U. Madhusoodanan, M. T. Jose and A. R. Lakshmanan, Radiat. Meas. 30 (1999) 65.
108. M. Peng, Z. Pei, G. Hong and Q. Su, Chem. Phys. Lett. 371 (2003) 1.
109. F. C. Palilla, A. K. Levine and M. R. Tomkus, J. Electrochem. Soc. 115 (1968) 642.
110. Y. Lin, Z. Zhang, Z. Tang, X. Wang, J. Zhang and Z. Zhang, J. Euro. Ceram. Soc. 21 (2001) 683.
111. L. Jiang, C. Chang, D. Mao and C. Feng, Opt. Mater. 27 (2004) 51.
112. J. Zhang, Z. Zhang, Z. Tang, Y. Tao and X. Long, Chem. Mater. 14 (2002) 3005.
113. E. Nakawaza and T. Mochida, J. Lumin. 72-74 (1997) 236.
114. H. Yamamoto and T. Matsuzawa, J. Lumin. 72-74 (1997) 287.
115. S. Shionoya and W. M. Yen, “Phosphor handbook”, CRC press, Boca Raton, 1999, p. 90.