簡易檢索 / 詳目顯示

研究生: 謝旭豪
Hsieh, Hsu-Hao
論文名稱: 電腦輔助設計在全接觸式小腿義肢承筒之應用
The Application of Computer Aided Design in Total Surface Bearing Transtibial Socket
指導教授: 許來興
Hsu, Lai-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 99
中文關鍵詞: 全接觸承重式小腿義肢承筒快速原型機介面系統
外文關鍵詞: Transtibial Socket, Total Surface Bearing, Rapid Prototyping, Interface design system
相關次數: 點閱:187下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在傳統的製作小腿義肢承筒過程中,義肢師手工取型與修整石膏殘肢陽模形狀時,相當依賴其個人的經驗及手藝,致使該客製化之承筒品質具有高度不確定性。為改善此手工製作承筒的缺點,本研究開發之設計小腿義肢承筒之介面系統,即嘗試協助義肢師可以比較容易製作出讓截肢患者可接受的小腿義肢承筒。利用承筒與殘肢接觸面緊密貼合的全接觸承重式(TSB, Total Surface Bearing)的概念及真空取型工具,殘肢在受壓狀態取得的陽模,使用3D掃描系統紀錄之殘肢數位點資料,經本研究之小腿義肢承筒介面系統重建殘肢模型;依據義肢師之專業知識設計小腿義肢承筒模型,將該承筒模型以快速成型機(RP, Rapid Prototyping)製作出RP承筒陽模,接著用該RP陽模包覆樹脂層完成承筒製作,即可提供小腿截肢患者試用,期待均勻地分散殘肢與承筒接觸的介面壓力。
    本研究主要目標係開發專為義肢師設計使用的介面軟體,運用OpenGL以及MFC函式庫在Visual Studio 2010中製作介面軟體,並依據義肢師的需求開發功能。藉由全接觸承重式真空取模技術取得已受壓之殘肢模型,可以減少修整殘肢陽模形狀的複雜度。本介面系統提供使用者(如義肢師)即時的互動畫面(interactive dialogue),其功能包含有輸入殘肢點資料檔案、依據濾點原理擷取適量之點資料、義肢角度校正、RP承筒陽模之偏移量、底座長度及RP承筒陽模薄殼厚度等。
    本研究有2位單腳小腿截肢患者參與試驗,經本研究發展之小腿義肢承筒之介面系統設計製作之TSB承筒,組裝支架及義足加上義肢師之微調,患者穿戴試用確認安全無虞之後,進行步態實驗與壓力實驗。實驗結果顯示,使用本系統設計全接觸承重式(TSB)小腿義肢承筒時,殘肢與承筒接觸的受壓及敏感的部位,其形狀完全不需要修整,製作完成之TSB承筒具有分散壓力之特性。除了確認本系統之可行性,搭配穿戴者的主觀意見,並指出系統與承筒設計上的缺失與不足,讓後續研究者將本系統發展至更完善的階段。

    Using plaster-based method to fabricate transtibial sockets, the shape modification of hand-cast stump mold has a lot of uncertainty as that entirely relies on the manul skill and experience of a prosthetist. To improve this drawback and to prevent the quality uncertainty of making sockets, this research developed a trnstibial socket design system that is to aid a prosthetist to design and fabricate a better-fit socket easily. Based on the design concept of total surface bearing (TSB) transtibial socket, a stump mold is duplicated by employing a vacuum casting tool and a digitized stump model can be obtained by an optical scanner. The proposed system then utilizes the scanned points to easily generate an RP (rapid prototyping) socket model based on a prosthetist’s basic expertise. After an RP socket mold has been manufactured, it is then used as positive mold to fabricate laminated resin socket. Assembled with a shank and prosthetic foot, a set of prosthesis is then ready to be aligned and tested.
    The interface system used OpenGL and MFC in visual studio 2010 to develop a prototype system that can meet the requirements of a prosthetist who is to fabricate transtibial sockets. During the process of designing socket shape, there are several interface dialogues that allow a user, specifically a prosthetist, easily to enter the characteristics of a transtibial socket. These include selecting the number of layers and the number of points on each layer for extracting required number of scanned points of a stump mold under pressure by filtering functions; the A/P/ (anterior/posterior) and M/L (medial/lateral) angles of the alignment of a prosthesis, the length of extension base, the offset and thickness of a socket model, etc.
    Two unilateral amputees participated in this research to verify the applicability of the TSB Transtibial socket design system. As long as an RP socket model has been designed and manufactured by an RP machine, the TSB socket is then assembled with shank and prosthetic foot. The fitness, comfortableness with the specific stump and the safety of trial walk confirmed by a prosthetist, the experiments including pressure measurement and motion analysis are then implemented to examine the feasibility of wearing the prosthesis with TSB socket. The experimental results of two volunteer subjects showed that the interface pressures exerting on the stump of the two amputees while using TSB sockets were lower than that of using PTB (patella tendon bearing) sockets, which were manually made by well experienced prosthetists. Together with the subjective opinions, the results also verified that the TSB sockets designed by the proposed interface system without any shape modification on pressure tolerant and sensitive areas were basically accepted by the two amputees. Further study on inadequate functions and more friendly use of the system would be required to improve the adoptability by prosthetists.

    目錄 摘要 I Abstract III 誌謝 V 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究方法與目的 11 1.4 論文架構 12 第二章 傳統與數位小腿義肢承筒製程之差異 13 2.1 手工石膏製程 13 2.2 CAD/RP製程 18 2.3 製程比較與討論 24 第三章 小腿義肢承筒介面系統功能與理論 26 3.1 殘肢點資料檔的輸入與輸出 26 3.2 校正殘肢座標系 27 3.3 濾點功能 29 3.4 偏置承筒網格 30 3.5 建構承筒底座及股骨髁上夾持部位 31 3.6 薄殼化 33 3.7 量測功能 34 第四章 小腿義肢承筒介面系統開發流程 35 4.1 建構MFC視窗框架 35 4.2 建構OpenGL繪圖區 38 4.3 殘肢介面編修系統開發流程 47 4.3.1 建立點資料類別與匯出STL點資料 48 4.3.2 校正殘肢座標系(Alignment)功能之數位製作流程 50 4.3.3 分層濾點功能之數位製作流程 53 4.3.4 網格偏置功能之數位製作流程 55 4.3.5 建構承筒底座之數位製作流程 57 4.3.6 建構股骨髁夾持部位之數位製作流程 60 4.3.7 建構承筒薄殼之數位製作流程 63 4.3.8 建構量測功能之數位流程 65 第五章 案例研究 67 5.1 全接觸式快速原型小腿義肢承筒設計流程 67 5.1.1 真空取模技術及掃描殘肢陽模 67 5.1.2 全接觸式小腿義肢承筒設計軟體 69 5.1.3 輸出快速原型模型 74 5.2 案例 75 5.2.1 案例一 75 5.2.2 案例二 79 5.3 義肢試用結果 84 5.3.1 步態實驗與壓力實驗說明 84 5.3.2 案例一實驗結果 86 5.3.3 案例二實驗結果 88 第六章 結論 93 6.1 研究成果與討論 93 6.2 未來展望 95 參考文獻 96 自述 99

    Artec 3D. Artec 3D scanner. from
    http://www.artec3d.com/3d_scanners/artec-mh. 2011.

    Bowker, J. H. Atlas of limb Prosthetics: Surgival,
    Prosthetic, and Rehabilitation Principles 2nd ed. (J.W.
    Michael, Ed.) Rosemont, IL: Mosby Year Book(St. Louis).
    1992.

    CUSTOMPART.NET. Fused Deposition Modeling(FDM). from
    http://www.custompartnet.com/wu/fused-deposition-
    modeling. 2008.

    Foort, J. The patella-tendon bearing prosthesis for below-
    knee amputees, a review of technique and criteria.
    Artificial Limbs, 9(1), 4-13. 1965.

    Freeman, D., Wontorcik, L. . Stereolithography and
    Prosthetic Test Socket Manufacture: A Cost/Benefit
    Analysis. J.of Prosthetics and Orthotics, 10(1), 17-20.
    1998.

    Horton, I. Ivor Horton's Beginning Visual C++ 2008: Wiley
    Publishing, Inc. 2008.

    Hsu, L. H., Huang, G. F., Lu, C. T., Hong, T. Y., & Liu, S.
    H. The Development of a Rapid Prototyping Prosthetic
    Socket Coated with a Resin Layer for Transtibial
    Amputees. Prosthetics and Orthotics International, 34(1),
    37-45. 2010.

    International Diabetes Federation The diabetic foot:
    amputations are preventable. from
    http://www.idf.org/position-statement-diabetic-foot. May
    2005.

    Kim, S.J., Lee, D.Y., & Yang, M.Y. Offset triangular mesh
    using the multiple normal vectors of a vertex. Paper
    presented at the CAD`04 conference. (2004).

    Kuhn, G. G. K. B. M. a. U. S. KBM-Prothese Vol. 14. Nancy
    France: Atlas d`Appareillage Prothetique et Orthopidique.
    1966.

    Monash University. Digital manipulation of prosthesis data
    for the introduction of advanced manufacturing
    techniques., from
    http://rehabtech.eng.monash.edu.au/cadcam/INFO/
    details.htm. 2002.

    Neumann, E. S. State-of-the-Science Review of Transtibial
    Prosthesis Alignment Perturbation J.of Prosthetics and
    Orthotics 21(4), 175-193. 2009.

    Öberg, K., Kofman, J., Karisson, A., Lindström, B., &
    Sigblad, G. The CAPOD System - A Scandinavian CAD/CAM
    System for Prosthetic Sockets. JPO: Journal of
    Prosthetics and Orthotics, 1(3), 139-148. 1989.

    OMEGA. OMEGA Tracer. from
    http://www.owwco.com/omega/device.php. 2010.

    Össur. Icecast Anatomy. from
    http://www.ossur.co.uk/prosthetics/sockets/
    icecastanatomy. 2010.

    P.CONVERY, A. W. P. B. Socket/Stump interface dynamic
    pressure distributions recorded during the prosthetic
    stance phase of gait of a trans-tibial amputee wearing a
    hydrocast socket. Prosthetics and Orthotics
    International, 23, 107-112. 1999.

    PROTO3000. Sinterstation Pro - Rapid Prototyping - SLS
    System from http://www.proto3000.com/services.aspx?
    topidcol=5&lowidcol=13.

    Radcliffe, C. W. F., J. The patellar-tendon-bearing below-
    knee prosthesis University of California (Berkeley and
    San Francisco), Biomechanics Laboratory. 1961.

    Rogers, B., Bosker, G. W., Crawford, R.H., Faustini, M. C.,
    Neptune, R. R., Walden,G.,Andrew J. Gitter. Advanced
    trans-tibial socket fabrication using selective laser
    sintering. Prosthetics and Orthotics International, 31
    (1), 88-100. 2007.

    Rovick, J., Chen, R., Van, V.R., Childress, D. Computer-
    aided manufacturing in prosthetics: Various possibilities
    using industrial equipment. Seventh World Congress of the
    International Society for Prosthetics and Orthotics:
    Chicago, IL: International Society for Prosthetics and
    Orthotics. 1992.

    Santosh, G. Z., Elizaberth, S., & Joan, E. S. A Method for
    Aligning Trans-Tibial Residual Limb Shapes So as to
    Identify Regions of Shape Change. IEEE TRANSACTIONS ON
    NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 13(4).
    DECEMBER 2005.

    Staats, T. B. L., J. The UCLA total surface bearing suction
    below-knee prosthesis. Clinical Prosthetics and
    Orthotics, 11, 118-130. 1987.
    Steinbichler Optotechnik. COMET 5. from
    http://www.applications3d.com/COMET5.pdf.

    Steinbichler Optotechnik. T-SCAN2. from
    http://www.steinbichler.de/de/main/t-scan_3.htm. 2010.
    YassineMrabet. Sagittal plane. from
    http://en.wikipedia.org/w/index.php?
    title=Sagittal_plane&oldid=273554982. 2009.

    Zahedi, M. S., Spence, W. D., Solomonidis, S. E., & Paul,
    J. P. Alignment of lower-limb prostheses. Journal of
    Rehabilitation Research and Development, 23(2), 2-19.
    1986.

    大新資訊. OpenGL超級手冊 台北市: 碁峰資訊. 2000.

    內政部統計處. 九十九年第三十四週內政統計通報(99年6月底身心障礙者人數統
    計). 2010.

    尤春風. CATIA V5 教育訓練手冊. 台北市: 加樺國際. 2006.

    呂權庭. 加強樹脂強化層之快速原型製造之膝下義肢承筒之彎曲強度與介面應力
    之研究. 國立成功大學機械工程學系, 台南市. 2008.

    紀傑騰. 真空成形殘肢模型應用於膝下義肢承筒之設計與製作. 國立成功大學機
    械工程學系, 台南市. 2010.

    莊惟喬. 全接觸式快速原型膝下義肢承筒網格化設計系統. 國立成功大學機械工
    程學系, 台南市. 2010.

    陳彥廷. 單側膝下義肢使用者步態分析及承筒負重研究. 國立成功大學機械工程
    學系, 台南市. 2010.

    熊大鈞. 曲面偏置方法應用於殘肢受壓區與非受壓區之形狀修改. 國立成功大學
    機械工程學系, 台南市. 2002.

    澤村誠志著,蕭英宏譯. 截肢義肢學: 高雄縣私立樹人醫事職業學校復健技術科
    教學委員會編印. 1985.

    賴志暐. 電腦輔助膝下義肢承筒設計之介面系統. 國立成功大學機械工程學系,
    台南市. 2009

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE