簡易檢索 / 詳目顯示

研究生: 王柏翰
Wang, Bo-Han
論文名稱: 化學氣相沉積氮化鎵奈米線的結構與光學分析及其電子場發射量測
Structural and optical analysis and electron field emission measurements of chemically vapor deposited GaN nanowires
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 124
中文關鍵詞: 化學氣相沉積氮化鎵奈米線場發射量測
外文關鍵詞: CVD, GaN nanowires, field emission measurements
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分別實驗在鍍有催化劑和未鍍催化劑的矽基板上,以水平式熱爐管化學氣相沉積法,於常壓下成長氮化鎵生成物。針對不同的實驗參數改變,如調變通入氨氣流量和成長反應溫度,來改變氮化鎵的生成物尺寸和形貌,並且從奈米線的末端判斷是否含有催化劑顆粒,即可知道是否依循VLS成長機制;在未鍍催化劑的矽基板上之生成物,基本上則依循VS成長機制,生成物分布密度則和先驅物蒸汽濃度分布有關。
    藉由光學顯微鏡、電子顯微鏡、微拉曼光譜儀、光激發光分析光譜儀和場發射量測系統,來探討氮化鎵生成物的結構與光學分析及其場發射電性。從光學顯微鏡和電子顯微鏡的觀察中,可以知道在常壓下的化學氣相沉積實驗,若要形成氮化鎵奈米線,勢必藉由金屬催化劑來輔助成長,否則將形成一塊塊的球狀或島狀晶體等結構。另外可以從微拉曼分析中,從光學聲子振動的模式來看,可以清楚了解本研究所生成的氮化鎵為Wurtzite(纖鋅礦結構),且也因實驗參數的不同,有不同的拉曼活性峰值訊號表現。再利用光激發光分析光譜儀來研究分析所成長反應後的生成物,其能帶結構的變化和材料受力的情形;了解在特定實驗參數下,產生了一些缺陷以及材料受到拉應力或壓應力的影響。最後再藉由場發射量測系統,來探討氮化鎵奈米線的場發射性質,驗證電子發射源材料的結構尺寸和分布,和場發射性質息息相關。

    This research uses thermal chemical vapor deposition(CVD) to grow gallium nitride(GaN) crystal at atmosphere on silicon substrate coated gold or not. I changed GaN crystalline size and morphology by controlling different experimental parameters, such as change ammonia flow rate and growing reaction temperature. And determine whether from the nanowires tip with catalyst particles, can know whether to follow the VLS mechanisms; basically, the resulant follow the VS mechanisms to grow on bare silicon, and the resultant density is related to the precursor vapor concentration distribution.
    The synthesized products morphology、optical and field emission properties are characterized by optical microscope(OM)、scanning electron microscopy(SEM)、micro-Raman spectrometer、photoluminescence(PL) spectrometer and field emission measurement system. From the OM and SEM observation, we can know if we want to grow GaN nanowires using CVD system at atmosphere, it is necessary to coat gold catalyst to assist reaction growing, otherwise, the resultant will form ball or island-like structure. Also available from micro-Raman analysis, from the optical phonon mode, we can see a clear understanding of this experiment generated GaN is wurtzite structure, and have different Raman active peak signal intensity by controlling different experimental parameters. And further analysis the resultant bandgap variation and force effects on the material after the thermal CVD experiment by using PL spectrometer; understand under the specific experimental parameters, resulting in some defect and resultant have pull or press force effects. Finally, I will make a discussion on GaN nanowires by using field emission measurement system, verify that the structure size and distribution of electron emission source materials are closely related with field emission properties.

    第一章 緒論 1 1-1 前言 1 1-2 奈米材料的基本物理效應[11] 5 1-3 研究動機與目的 9 第二章 理論基礎與文獻回顧 10 2-1 氮化鎵材料概述 10 2-2 奈米線成長機制[16] 18 2-2-1 VLS (Vapor-Liquid-Solid)法[16-17] 21 2-2-2 SLS (Solution-Liquid-Solid)法 24 2-2-3 VS (Vapor-Solid)法 26 2-2-4 模板 (Template)法[16] 30 2-3 氮化鎵奈米線發展回顧 34 第三章 實驗流程與分析儀器 43 3-1 實驗流程 43 3-1-1 實驗材料 43 3-1-2 基板前處理 47 3-1-3 實驗步驟 48 3-2 實驗分析儀器 50 3-2-1 光學顯微鏡 (Optical Microscope)[26] 50 3-2-2 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM)[27] 52 3-2-3 微拉曼光譜儀 (Micro-Raman Spectrometer)[28-29] 56 3-2-4 光激發光譜儀 (Photoluminescence,PL Spectrometer)[30] 59 3-2-5 場發射量測系統 (Field Emission Measurement System) 63 第四章 結果與討論 67 4-1 氮化鎵奈米線的成長之形貌分析 67 4-1-1 改變氨氣氣體流量 71 4-1-2 改變實驗成長溫度 78 4-2 顯微拉曼分析 84 4-2-1 改變氨氣氣體流量 84 4-2-2 改變實驗成長溫度 90 4-3 光激發光分析 96 4-3-1 改變氨氣氣體流量 96 4-3-2 改變實驗成長溫度 103 4-4 場發射電性量測 108 第五章 結論 115 第六章 未來展望 119 參考文獻 120

    [1] http://www.me.berkeley.edu/nti/englander1.ppt
    [2] 陳貴賢,林麗瓊,鴻儒生,黃柏仁等,具有光波長選擇性之金屬奈米顆粒鑲嵌的介電奈米線,中研院重要研究成果專刊 (2007).
    [3] 楊志中,物理雙月刊, 23 (6), 647 (2001).
    [4] 陳貴賢,科學人, 6, 54 (2007).
    [5] 林惟芳,新穎有機無機奈米摻合材料在醫學、光學及光電元件的應用,第四屆經濟部奈米產業科技菁英獎 (2008).
    [6] 陳啓東,電子月刊, 102, 140 (2004).
    [7] S. Nakamura, et al., "High-Power Ingan Single-Quantum-Well-Structure Blue and Violet Light-Emitting-Diodes," Applied Physics Letters, vol. 67, pp. 1868-1870, Sep 25 1995.
    [8] S. Nakamura, et al., "Room-temperature continuous-wave operation of InGaN multi-quantum-well-structure laser diodes with a long lifetime," Applied Physics Letters, vol. 70, pp. 868-870, Feb 17 1997.
    [9] J. W. Orton and C. T. Foxon, "The electron mobility and compensation in n-type GaN," Semiconductor Science and Technology, vol. 13, pp. 310-313, Mar 1998.
    [10] 史光國, “GaN藍色發光及雷射二極體之發展現況”, 工業材料 126.
    [11] 蔡信行,孫光中, “奈米科技導論 基本原理及應用”, 新文京開發股份有限公司 (2004).
    [12] S. Strite and H. Morkoc, "Gan, Ain, and Inn - a Review," Journal of Vacuum Science & Technology B, vol. 10, pp. 1237-1266, Jul-Aug 1992.
    [13] http://www.opt.ees.saitama-u.ac.jp/~zyoho/t-oka/epitaxy.html
    [14] G. S. Cheng, et al., "Current rectification in a single GaN nanowire with a well-defined p-n junction," Applied Physics Letters, vol. 83, pp. 1578-1580, Aug 25 2003.
    [15] 賴彥霖, “氮化鎵銦(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究”, 成功大學材料科學與工程學系, 博士論文 (2006).
    [16] Y. N. Xia, et al., "One-dimensional nanostructures: Synthesis, characterization, and applications," Advanced Materials, vol. 15, pp. 353-389, Mar 4 2003.
    [17] C. C. Chen, et al., "Catalytic growth and characterization of gallium nitride nanowires," Journal of the American Chemical Society, vol. 123, pp. 2791-2798, Mar 28 2001.
    [18] Y. Y. Wu and P. D. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, Apr 4 2001.
    [19] T. J. Trentler, et al., "Solution-Liquid-Solid Growth of Crystalline Iii-V Semiconductors - an Analogy to Vapor-Liquid-Solid Growth," Science, vol. 270, pp. 1791-1794, Dec 15 1995.
    [20] H. Yu and W. E. Buhro, "Solution-liquid-solid growth of soluble GaAs nanowires," Advanced Materials, vol. 15, pp. 416-+, Mar 4 2003.
    [21] P. D. Yang and C. M. Lieber, "Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites," Journal of Materials Research, vol. 12, pp. 2981-2996, Nov 1997.
    [22] L. X. Zhao, et al., "Large-scale synthesis of GaN nanorods and their photoluminescence," Applied Physics a-Materials Science & Processing, vol. 74, pp. 587-590, Apr 2002.
    [23] S. Han, et al., "Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method," Journal of Materials Research, vol. 18, pp. 245-249, Feb 2003.
    [24] Z. H. Zhong, et al., "Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices," Nano Letters, vol. 3, pp. 343-346, Mar 2003.
    [25] G. S. Cheng, et al., "Highly ordered nanostructures of single crystalline GaN nanowires in anodic alumina membranes," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 286, pp. 165-168, Jun 30 2000.
    [26] http://elearning.stut.edu.tw/caster/3/no3/3-1.htm
    [27]http://www.materialsnet.com.tw/AD/ADImages/AAADDD/MCLM100/download/equipment/EM/FE-SEM/FE-SEM005.pdf
    [28] http://library.hwai.edu.tw/Science/content/1983/00110167/0002.htm
    [29]http://www.ntu-ccms.ntu.edu.tw/lab/homepage/ultrafast/paper/PDF/1-5-2-4.pdf
    [30] 謝嘉民,賴一凡,林永昌,枋志堯, “光激發螢光量測的原理、架構及應用”, 奈米通訊 第十二卷第十二期 28-39.
    [31] D. V. Dinh, et al., "Size-dependent Field-emission Properties from Triangular-shaped GaN Nanostructures," Journal of the Korean Physical Society, vol. 55, pp. 202-206, Jul 2009.
    [32] T. Azuhata, et al., "Polarized Raman-Spectra in Gan," Journal of Physics-Condensed Matter, vol. 7, pp. L129-L133, Mar 6 1995.
    [33] C. Bungaro, et al., "Ab initio phonon dispersions of wurtzite AlN, GaN, and InN," Physical Review B, vol. 61, pp. 6720-6725, Mar 1 2000.
    [34] L. Filippidis, et al., "Raman frequencies and angular dispersion of polar modes in aluminum nitride and gallium nitride," Physica Status Solidi B-Basic Research, vol. 198, pp. 621-627, Dec 1996.
    [35] J. M. Zhang, et al., "Raman spectra of isotopic GaN," Physical Review B, vol. 56, pp. 14399-14406, Dec 1 1997.
    [36] M. Katsikini, et al., "Raman study of Mg, Si, O, and N implanted GaN," Journal of Applied Physics, vol. 94, pp. 4389-4394, Oct 1 2003.
    [37] H. Y. Peng, et al., "Bulk-quantity GaN nanowires synthesized from hot filament chemical vapor deposition," Chemical Physics Letters, vol. 327, pp. 263-270, Sep 15 2000.
    [38] Y. H. Wang, et al., "Fabrication of single-crystalline beta-Ga2O3 nanowires and zigzag-shaped nanostructures," Journal of Physical Chemistry C, vol. 111, pp. 17506-17511, Nov 29 2007.
    [39] I. Berishev, et al., "Field emission properties of GaN films on Si(111)," Applied Physics Letters, vol. 73, pp. 1808-1810, Sep 28 1998.
    [40] C. C. Tang, et al., "Improving field emission properties of GaN nanowires by oxide coating," Applied Physics Letters, vol. 94, pp. -, Jun 15 2009.

    下載圖示 校內:2011-07-27公開
    校外:2011-07-27公開
    QR CODE