研究生: |
王宏洲 Wang, Hong-jhou |
---|---|
論文名稱: |
非穩態油滴燃燒之正準理論分析 Canonical Analysis of Unsteady Droplet Combustion |
指導教授: |
邱輝煌
Chiu, Huei-Huang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 油滴 、燃燒 、正準積分理論 、非穩態 |
外文關鍵詞: | Canonical theory, unsteady, combustion, droplet |
相關次數: | 點閱:88 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為暸解噴霧燃燒系統中複雜的熱流傳輸問題,研究油滴蒸發與燃燒的行為為一門重要的課題。本文所探討的問題便是將一顆常溫油滴置入一高溫熱對流場中,計算在不同環境下,包含不同流場溫度、壓力以及不同油滴初始半徑下,流經一顆油滴所產生的流場暫態變化及其蒸發、燃燒的情形。以下將藉由正準積分理論用以分析計算在流場中各項物理機構對於整體蒸發率的貢獻量,另外針對油滴處在不同流場環境下,各項物理機構的變化情形及所佔的量級角色,以及氣相和液相界面間的傳輸現象做了更加詳細的探討與比較。
研究發現當處於不同環境下,各項物理機構會有相對應的變化,經由觀察這些變化可以了解到在強迫對流下,對流項和化學項是影響蒸發率變化的主要機構;在流場改變時,受熱流場性質變化的影響,會對蒸發率造成抑制的現象。油滴內部僅在初期會對蒸發率造成影響,並且為一負的貢獻量,隨著油滴內部溫度趨於均勻,可發現液相部份對蒸發率的貢獻量漸趨於零;同時藉由氣液相界面分配因子可清楚了解到二相對於蒸發率的貢獻量級比例會隨時間變化的情況,且沿著油滴表面觀察界面分配因子的變化,則可明顯看出火焰模態的演變情形對其有著相當重要的影響。
Research of droplet vaporization and combustion is importance to realize the spray combustion system wherein involving the complex aerothermochemical transport phenomena. In the present thesis, the droplet is exposed in the hot environment, thus the transient heating, vaporization, and combustion of outer gaseous flow and interior liquid flow inside the droplet are investigated by numerical method under various environmental conditions including gaseous temperature, pressure and initial droplet size.
After obtaining numerical exterior and interior thermal flow information, the canonical integral method (CIM) is applied to assist the interpretation of numerical data, then elucidate the physical contributing sub-mechanisms to the droplet vaporization and combustion, thereby calculate the order of magnitude of all terms and finally assess the interior and exterior two-phase transport behaviors and orders by gas and liquid surface modulation factors as time evolves under various flow conditions.
The results by CIM analysis reveal that the convection and chemical reaction terms are the two major driving sub-mechanisms for droplet vaporization and combustion in the forced convection flow field under various conditions. Furthermore, the effect of the variable property term exhibits the negative contribution to reduce the droplet gasification rate. The interior contributions inside droplet including the convection and conduction terms just play the role to complete each other during the droplet heating period and the overall interior effect is negative, and their contributions vanish as the droplet temperature reaches more uniform. Finally, the gas and liquid surface modulation factors are calculated to understand the difference of the contributing order of magnitude between the gaseous and liquid flow fields along the time evolution and the local surface modulation factor along the droplet surface are also shown to investigate the influence from the change of droplet flame modes.
1. Sirignano WA., Fluid Dynamics and Transport of Droplets and Sprays, Cambridge: Cambridge University Press; 1999.
2. Peskin,R.L.,Polymerpoulos,C.E. and Yeh,P.S., ”Resulets from a Theoretical sudy of fuel drop ignition and Extinction,” AIAA journal, Vol. 5,No. 12, pp. 2173-2178, 1967.
3. Polymerpoulos,C.E. and Peskin,R.L., ”Ignition and Extinction of Liquid Fuel drops numerical computations,” Combustion and Flame, Vol. 13, pp. 166-172, 1970.
4. Law,C.K. ”A symptotic Theory for Ignition and Extinction in droplet burning,” Combustion and Flame,Vol. 24, pp. 89-98, 1975.
5. Prakash,S.,and Sirignano,W.A., ”Theory of convective droplet vaporization with unsteady heat transfer in the circulating liquid phase,” Int. J. Heat Mass Transfer, Vol. 23, pp. 253-268, 1980.
6. Sirignano,W.A., ”Fuel droplet vaporization and spray combustion theory,” Prog. Energy and Combustion Sci, Vol. 9, pp. 291-322, 1983.
7. Sundararajan,T., and Ayyaswamy,P.S., ”Hydrodynamics and heat transfer associated with condensation on a moving drop:Solutions for intermediate Reynolds numbers,” J.Fluid Mech., Vol. 149,pp. 33-58, 1992.
8. Renksizbulut,M., and Haywood,R.J. ,”Transient droplet evaporation in high temperature intermediate Reynolds number flows,” Ph.D. Thesis, Northwestern University, Evanston, IL, 1988
9. Renksizbulut,M. and Yuen, M.C.,”Experimental study of droplet evaporation in a high temperature air stream,” ASME Journal of heat transfer, Vol. 105, pp. 384-388, 1983
10. Law,C.K., ”heat and mass transfer in combustion : fundamental Concepts and analytical techniques,” Prog.Energy Combustion Sci., Vol. 10, pp.295-318, 1984.
11. Dwyer,H.A. and Sanders,.R., ”Calculations of unsteady reacting droplet flows,” 22nd Symposium on Combustion, pp. 1923-1929, 1988.
12. Tsai,G.T. and Yang,J.T., ”Numerical Analysis of convective ignition and flame development over a porous sphere,” Combustion Science and Technology, Vol. 96, pp.1-21, 1994.
13. Dwyer,H.A. and Sanders,B.R., ”Droplet Dynamics and Vaporization with pressure as a parameter,” ASME Paper No. 84-WA/HT20,1984.
14. Faeth,G.M., ”Evaporation and Combustion of sprays,” Proc. Energy Combustion. Sci. Vol. 9, pp. 1-76, 1983.
15. Frössling N, “The evaporating of falling drops,” Beitr G. Geophysics Vol. 52, pp. 170~216, 1938.
16. Eisenklam P, Arunachalam SA, Weston JA. “Evaporation rates and drag resistance of burning drops,” 11th Symposium (Int.) on Combustion. The Combustion Institute:Pittsburgh, PA,. pp. 715–728, 1967.
17. Agoston G.A, Wise H, Rosser WA, ”Dynamic factors affecting the combustion of luquid spheres,” Sixth Symposium (Int.) on Combustion. The Combustion Institute: Pittsburgh, PA. pp. 708–717, 1957.
18. Spalding D.B., “The combustion of liquid fuels,” Fourth Symposium (Int.) on Combustion. The Combustion Institute: Pittsburgh, PA, pp. 847–864, 1954.
19. Godsave GAE. “Studies of the combustion of drops in a fuel spray – the burning of single drop’s of fuel,” Fourth Symposium (Int.) on Combustion. The Combustion Institute: Pittsburgh, PA, pp. 818–830, 1954.
20. Law C.K., Sirignano WA. “Unsteady droplet combustion with droplet heating - Ⅱ.conduction limit,” Combust Flame, Vol. 28, pp. 175–286, 1977.
21. Monaghan M.T., Siddall G , Thring M.W., “The influence of initial diameter on the combustion of single drops of liquid fuel,” Combust and Flame Vol. 12, pp. 45-53, 1968.
22. Chiang C.H., Raju M.S., and Sirignano W.A., “Numerical analysis of convective Vaporizing Fuel droplet with variable Properties,” AIAA Paper 89-0834.
23. Renksizbulut M. and Haywood R.J., “Transient droplet evaporation with variable properties and internal circulation at intermediate Reynolds numbers,” Int. J. Multiphase flow, Vol. 14, pp. 189-502,1988.
24. Renksizbulut M., Nafziger R. and Haywood R.J., “A detailed examination of gas and Liquid phase transient process in convective droplet evaporation,” J. of Heat Transfer, vol. 111, pp. 498-502, 1989.
25. Huang L.W. and Chen C.H., “Numerical analysis of a burning droplet with internal circulation in a gravitational environment,” Numerical Heat Transfer, Part A, Vol. 34, pp. 43-60, 1998.
26. Liu C.C. ,Chen W.H. ,Jiang T.L., “Model of unsteady n-octane droplet burning in high-temperature streams”, Combust Sci. and Tech., vol. 176, pp. 1-31, 2004.
27. Zhang,H., “Evaporation of a spherical moving fuel droplet over a wide range of ambient pressures within a nitrogen environment.” Ph.D. dissertation, University of Nebraska- Lincoln, Lincoln, Nebraska. 2000.
28. Hongtao Zhang. “Numerical research on a vaporizing fuel droplet in a forced convective environment.” Int.J. Multiphase flow Vol. 30, pp. 181-198, 2004.
29. Chiu, H.H., ”Canonical Integral Method”, Lecture Notes, IAA, NCKU, 1991.
30. 陳維新,”熱對流油滴之異向輸送現象(正準油滴理論)” 成功大學博士論文,1993
31. Chiu, H.H. and Tsai, H.L. “Laws of Interfacial Regression of Hybrid Propellant,” Proc. 2nd Asia-Pacific Conf. On Combustion ASPACC-2, pp. 243~246, 1999.
32. 胡禮和, ”固態推進劑燃燒特性分析” 成功大學航太所碩士論文,1994
33. 許家銘, ”正準油滴理論-演變、結構與複雜性”國立成功大學航空太空工程研究所碩士論文,2000
34. Hsu J.M., Chiu H.H. and Tsai H.L., “Canonical Fluid Dynamic Analysis of Unsteady Single Droplet Combustion,” AASRC/CCAS Joint Conference, Taichung, 2004.12
35. 蔡欣倫,王宏洲,劉昭忠,邱輝煌, “不同壓力下暫態油滴之正準理論分析”,中國航太學會/中華民航學會聯合研討會,高雄,2005.12.
36. 蔡欣倫,王宏洲,劉昭忠,邱輝煌, ”不同半徑下暫態油滴燃燒之正準理論分析”,第十六屆燃燒學會學術研討會,國立海洋大學,2006.3.
37. 陳艮彥, ”混合推進劑燃燒之正準理論-退縮率、結構及性能”,國立成功大學航空太空工程研究所碩士論文,2000.
38. Abramzon B., Sazhin S., “Convective vaporization of a fuel droplet with thermal radiation absorption”, Fuel, Vol. 85 pp. 32–46, 2006.
39. Lage PLC, Rangel RH. “Total thermal radiation absorption by a single spherical droplet.” J. Thermophys Heat Transfer, Vol. 7, n.1, pp. 101–109, 1993.
40. Huang L.W. and Chen C.H., “Droplet Ignition in a High-Temperature Convective Environment ,” Combustion and Flame Vol. 109, 145-162 , 1997.
41. Jiang T.L. ,Liu C.C.and Chen W.S. ”Convective Fuel droplet burning accompanied by an Oxidizer droplet,” Combust. Sci. and Tech. Vol. 97 pp.271-301, 1994.
42. Abramzon B, Borde I. “Conjugate unsteady heat transfer from a droplet in creeping flow.” AIChE. J. Vol. 26, pp. 536–544. 1980.
43. Chiang C.H., Raju M.S., Sirignano W.A. , “Numerical analysis of convective, vaporizing fuel droplet with variable properties.” Int. J. Heat Mass Transfer.” Vol. 35, pp. 1307-1324, 1992.
44. Haywood R.J. ,Nafziger R. , Renksizbulut M., ”A detailed examination of gas and liquid phase transient processes in convective droplet evaporation.” Journal of heat transfer. Vol. 111 pp. 495-502 , 1989 May.
45. Natarajan, R., and Acrivos, A., “The Instability of the Steady Flow Past Spheres and Disks,” J. Fluid Mech. Vol.254, pp. 323–344, 1993.
46. Tomboulides, A. G., Orszag, S. A., and Karniadakis, G. E., ”Direct and large-eddy simulation of axisymmetric wakes,” AIAA Paper 93-0546, 1993.
47. Westbrook,C.K. and Dryer,F.L., ”Simplified Reaction Mechanisms for the Oxidation of Hydrocarbon Fuels in Flames,” Combustion Sci. Technol., Vol. 27,pp. 31-43, 1981.
48. Reid,R.C., Prausnitz, J.M., and Poling, B.E., “The properties of Gas & Liquids,” Mcgraw-Hill International Editions, New York, 1988.
49. H.H. Chiu., “Advances and challenges in droplet and spray combustion. I. Toward a unified theory of droplet aerothermochemisty.” Progress in Energy and combustion science., vol. 26,pp. 381-416,2000.
50. Thompson, J.F., Warsi,Z.U., and Mastin, C.W., Numerical Grid Generation: Foundations and Applications, North-Holland, Amsterdam, 1985.