簡易檢索 / 詳目顯示

研究生: 林子翔
Lin, Tzu-hsiang
論文名稱: 旋轉塗佈硫化鎘薄膜與回火條件對薄膜影響之探討
Preparetion of CdS Thin Films by Spin Coating and The Effect of Annealing on CdS Thin Films
指導教授: 陳進成
Chen, Chin-cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 109
中文關鍵詞: 硫化鎘旋轉塗佈回火微波法
外文關鍵詞: microwave method, annealing, CdS, spin coating
相關次數: 點閱:73下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前的照明設備,多數會產生熱及污染等的問題,因此開發具有無水銀污染、發光效率高等優點之半導體發光二極體為必然趨勢。本研究構想製作量子點型的發光二極體,利用量子點本身高效能的發光,期待可藉由量子侷限效應在可見光譜的發光波長內調控發光顏色。
    本論文分成二個部分,首先以微波法配合化學水浴沈積法以簡單快速的製備硫化鎘薄膜,再利用高溫爐做熱處理,並分別針對熱處理的溫度、時間作討論,以期待能夠達到P-N 結的效果。再者以微波法製備硫化鎘微粒作為旋轉塗佈的溶液,試著利用旋轉塗佈法製備硫化鎘半導體薄膜,並分別討論旋轉塗佈中塗佈溶劑、溶液濃度、初轉轉速、初轉時間與末轉轉速對於薄膜均勻度的影響,並對薄膜做光譜、組成、表面形態和UV燈光照射產生螢光等分析。
    本研究發現隨著熱處理溫度的上升PL光譜、結晶性與電性結構都會有明顯的變化,於200-300oC變化最為明顯,且熱處理溫度對於薄膜的影響大於熱處理時間的影響。並成功的找到旋轉塗佈法的最佳條件,以製備出一層均勻的硫化鎘薄膜。

    Light-emitting diodes (LEDs) have the advantages of no mercury pollution and high emission efficiency. Developments of LEDs not only serve to improve the disadvantages of traditional illuminants but also save the energy and protect the environment of the world. This research is aimed at the manufacture of quantum dot (QD) LED, make use the high luminescence efficiency and limit the quantum confinement effect to control the luminescence color of QD
    In this study, CdS quantum dots are synthesized by microwave method. The effect of annealing temperature and time on CdS thim films synthesized by chemical bath deposition were investigated. The nanostructure and crystallization of the thin films were analyzed by means of XRD, Raman and SEM. In addition, the optical properties were measured by PL and UV. A annealing at 200-300oC for 30 minutes was found to be the optimum annealing condition for the preparation of P-N Junction.
    The QD CdS thin films were rapidly deposited on ITO substrate by spin coating method using QD dispersed on n,n-dimethylformamide (DMF) solution. The influences of spin coating solvent, solution concentration, spin speed and spin time were investigated. A relatively high surface coverage and uniform monlayer films of CdS particles from the center to the edge of the substrate was achieved by the appropriate preparation parameters.

    中文摘要 Ⅰ 英文摘要 Ⅱ 總目錄 Ⅲ 圖目錄 Ⅶ 表目錄 ⅩⅠ 符號說明 ⅩⅠⅠ 第一章 緒論 1 1-1 發光二極體之發展 1 1-2 文獻回顧 5 1-2-1 半導體發光材料 5 1-2-2 Ⅱ-Ⅵ族半導體發光材料 6 1-2-3 硫化鎘奈米微粒之研究 2 1-2-4 發光二極體薄膜之製備 5 1-3 研究動機 19 第二章 背景理論 21 2-1 半導體物理基礎 21 2-1-1 半導體之特性 21 2-1-2 量子點的特性 25 2-1-3 半導體量子侷限效應理論 28 2-2 微波法 32 2-3 化學水浴沈積法 35 2-3-1 成核原理 35 2-3-2 化學水浴法的相關參數影響 36 2-4 旋轉塗佈 37 2-4-1 旋轉塗佈法程序 39 2-5 發光二極體原理 42 2-5-1 P-N JUNCTION 42 第三章 實驗 44 3-1 實驗流程 44 3-2實驗藥品及儀器 46 3-3 實驗步驟 47 3-3-1 ITO與玻璃基板之準備 47 3-3-2 CdS回火條件的探討 47 3-3-2(a) 化學水浴沈積法製備薄膜 47 3-3-2(b) 利用高溫爐探討升溫條件 48 3-3-3 量子點微粒之製備 49 3-3-3(a) 固定前驅物濃度 49 3-3-3(b) 不同前驅物濃度 50 3-3-4 旋轉塗佈硫化鎘薄膜 51 3-4 分析儀器及方法 52 第四章 實驗結果 55 4-1 薄膜熱處理之光學與形態分析 55 4-1-1 光譜與晶相分析 56 4-1-1 (a)不同回火溫度的影響 57 4-1-1 (b)不同回火時間的影響 64 4-1-2 薄膜表面形態分析 67 4-1-2 (a)不同回火溫度的影響 67 4-1-2 (b)不同回火時間的影響 70 4-2 旋轉塗佈硫化鎘薄膜 72 4-2-1 固定前驅物濃度 72 4-2-1(a) 不同旋轉塗佈溶劑之影響 72 4-2-1(b) 溶液濃度對薄膜的影響 75 4-2-1(c) 初轉轉速的影響 79 4-2-1(d) 初轉時間的影響 83 4-2-1(e) 不同末轉的影響 87 4-2-1(f) 增加旋轉塗佈次數的影響 89 4-2-2 改變前驅物濃度的影響 92 4-2-2(a) 不同前驅物濃度的影響 92 4-2-2(b) 旋轉塗佈硫化鎘薄膜 95 第五章 結論 100 參考文獻 102

    [1]孫培真,”新世代節能環保照明” ,生活科技教育月刊 (2005)38.
    [2] M. George Craford, MRS bulletin, 25(10) (2000) 27.
    [3] N. Holonyak Jr. and S. F. Bevaqua, Appl. Phys. Lett., 1(4) (1962) 82.
    [4] M. George Craford, Circuits and Devices-IEEE, 8(5), (1992)24.
    [5] N. Savage, Technology Review, 103(5) (2000) 38.
    [6]陳澤澎,“發光二極體的發展及新應用”,工業材料123 (1997) 74.
    [7] N. Holonyak, Jr., S. F. Bevacque, C. V. Bielan, and J. Lubowski, Appl. Phys. Lett., 3(3) (1963) 1.
    [8] D. G. Thomas, J. J. Hopfield, and C. J. Frosch, Phys. Rev. Lett., 15(22) (1965) 857.
    [9] M. J. Chou, D. C. Tsui, and G. Weimann, Appl. Phys. Lett., 47(6)(1985)609.
    [10] M. A. Haase, J. Qiu, J. M. Depuyde, and H. Cheng, Appl. Phys. Lett., 59(11) (1991) 1272.
    [11] Nakamura, Kitamura, H. Umeya, A. Jia, M. Kobayashi, A. Yoshikawa, M. Shimotomai, Y. Kato, and K. Takahashi, Electronics Lett., 34(25)(1998) 2435¬¬¬.
    [12] A. Ishibashi, J. Crys. grow., 159 (1996) 555.
    [13] S.M.Sze,”Physics of Semiconductor Device,” Wiley Interscience Publication,New York,(1981).
    [14] Landholt-Boernstein (1982).
    [15] J. E. Macintyre(executive editor), F. M. Daniel, V. M. Stirling(assistant editors), Dictionary of Inorganic Compounds-Chemical Database ,1st Editions, Published by Charpman and Hall(1992).
    [16] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Science, 256 (1992) 1425.
    [17] K. P. Jain, Physics of Semiconducting Nanostructures, Narosa Publication, (1997)25.
    [18] J. Nanda, B. A. kuruvilla, K. V. P. Shafi, D. D. Sarma, Phys. Rev. B, 59 (1999) 7473.
    [19] A. D. Yoffe, Adv. Phys., 42 (1993) 173.
    [20] M. E. Wozniak, and A. Sen, Chem. Mater., 4 (1992) 753.
    [21] Y. Wang and N. Herron, J. Phys. Chem., 91 (1987) 257.
    [22] C. Petit, P. Lixon, and M. P. Pileni, J. Phys. Chem., 94 (1990) 1598.
    [23] N. Herron, Y. Wang, H. Eckert, J. Am. Chem. Soc., 112 (1990) 1322.
    [24] T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller, and H. Weller, J. Phys. Chem., 98 (1994) 7665.
    [25] M. L. Steigerwald, A. P. Alivisatos, J. M. Gibson, T. D.Harris, R. Kortan, A. J. Muller, A. M. Thayer, T. M. Duncan, D. C. Douglass, L. E. Brus, J. Am. Chem. Soc., 110 (1988) 3046.
    [26] R. Rossetti, J. L. Ellison, J. M. Gibson, L. E. Brus, J. Chem. Phys., 80(9) (1984) 4464.
    [27] T. Gacoin, K. Lahlil, P. Larregaray, and J-P. Boilot, J. Phys. Chem. B, 105 (2001) 10228.
    [28] R. Reisfeld, J. Alloys and Compounds, 341 (2002) 56.
    [29] C. B. Murray, D.J. Norris, M.G. Bawendi, J. Am. Chem. Soc., 115(1993)8706.
    [30] Mike. Lazell, Paul O’Brien, J. Mater. Chem., 9 (1999) 1381.
    [31] S. Komarneni, R. Roy, Q. H. Li, Mater. Res. Bull. 27(12), (1992)1393.
    [32] Christopher. C. Landry, Jason Lockwood, and Andrew R. Barron, Chem. Mater. 7, (1995)699.
    [33] J. Zhu, O. Palchik, S. Chen, and A. Gedanken, J. Phys. Chem. B 104, (2000)7344.
    [34] Y. Wada, H. Kuramoto, J. Anand, T. Kitamura, T. Sakata, H. Mori, and S. Yanagida, J. Mater. Chem. 11, (2000)1936.
    [35] J. J. Zhu, M. G. Zhou, J. Z. Xu, X. H. Liao, Mater. Lett. 47, (2000)25.
    [36] X. H. Liao, J. J. Zhu, H. Y. Chen, Mater. Sci. Eng. B 85, (2001)85.
    [37] H. Uda, H. Yonezawa, Y. Ohtsubo, M. Kosaka, H. Sonomura, Sol. Energy Mater. Sol. Cells, 75 (2003) 219.
    [38] H. Uda, T. Hujii, S. Lkegami, and H. Sonomura, Proceedings of the 26th IEEE PVSC, (1997)523.
    [39] K. Senthil, D. Mangalaraj, Sa. K. Narayandass, R. Kesavamoorthy, G. L. N. Reddy, Nucl. Instr. and Meth. in Phys. Res. B., 173 (2001) 475.
    [40] K.El Assali, M. Boustani, A. Khiara, T. Bekkay, A. Outzourhit, E. L. Ameziane, J. C. Bernede, and J. Pouzet, Phys. Stat. Sol., 178 (2000) 701.
    [41] H. Ashour, K.El Assali, Phys. Stat. Sol., 184 (2001) 175.
    [42] E. Cordoncillo, P. Escribano, G. Monros, M. A. Tena, V. Orera, and J. Carda, J. Solid State Chem., 118 (1995) 1.
    [43] S. Gorer, G. Hodes, Y. Sorek, R. Reisfeld, Mater. Lett., 31 (1997) 209.
    [44] E. J. Dawnay, M. A. Fardad, Mino Green, and E. M. Yeatman, J. Mater. Res., 12 (1997) 3115.
    [45] S. M. Song, S. Y. Choi, J. Non-Cryst. Solids, 291 (2001) 50.
    [46] S. Coe, W. K. Woo, M. Bawend, and V. Bulovic, Nature, 420 (2002) 800.
    [47] D. B. Mitzi, L. L. Kosbar, C. E. Murray, M. Copel, and A. Afzali, Nature, 428 (2004) 299.
    [48] Z. Y. Pan, X. G. Peng, T. J. Li, J. Z. Liu, Appl. Sur. Sci., 108 (1997) 439.
    [49] P. Facci, V. Erokhin, A. Tronin, and C. Nicolini, J. Phys. Chem., 98(1994) 13323.
    [50] Y. H. Ma and R. H. Bube, J. Electrochemical Soc., 124 (1977) 1430.
    [51] C. H. Chen, M. H. J. Emond, E. M. Kelder, B. Meester, and J. Schoonman, J. Aerosol Sci., 30 (1999) 959.
    [52] S. Leeuwenburgh, J. Wolke, J. Schoonman, and J. Jansen, J. Biomedical Mater. Res. A, 66 (2003) 330.
    [53] A. A. van Zomeren, E. M. Kelder, J. C. M. Marijnissen, and J. Schoonman, J. Aerosol Sci., 25 (1994) 1229.
    [54] M. Danek, K. F. Jensen, C. B. Murry, and M. G. Bawendi, J. Crys. Grow., 145 (1994) 714.
    [55] B. Su and K. L. Choy, Thin Solid Films, 361 (2000) 102.
    [56]鄭士豪,“微波法製備CdS和CdSe量子點及電噴霧法製備P-N Type發光膜之研究”,國立成功大學碩士論文 (2006).
    [57] R. A. Pearman,陳世昌 譯,“固態工業電子學”,東華書局(1986).
    [58] B. G. Streetman and S. Banerjee, Solid state electronic devices, 5th Editionm, NJ:Prenticce Hall(2000).
    [59] M. V. Artemyev,S. V. Gaponenko, I. N. Germanenko, A. M. Kapitonov, Chem. Phys. Lett., 243 (1995) 450.
    [60] A.P.Alivisatos,Science,271(1996)933.
    [61] N. M. Park, T. S. Kim, and S. J. Park, Appl. Phys. Lett., 78 (2001) 23.
    [62] J. H. Davies, The physics of low-dimensional semiconductors, Published by the Press Syndicate of the University of Cambridge, (1998) p.1-3, 13, 46, 107.
    [63] R. Rossetti, R. Hull, J. M. Gabson, and L. E. Brus, J. Chem. Phys., 83 (1985) 1406.
    [64] L. E. Brus, J. Chem. Phys., 79 (1983) 5566.
    [65] L. E. Brus, J. Chem. Phys., 80 (1984) 4403.
    [66] L. Brus, J. Quantum Electronics, 22 (1986) 1909.
    [67] H.M.Kingston,Stephen J.Haswrll, Microwave-Enhanced .Chemistry.,Chapter1,3-54,American Chemical Society,Washington(1997)
    [68] J. C. Jansen, A. Arafat, A. K. Barakat, H. Van Bekkum, Synthesis of Microporous Materials, 1 (1992) 507.
    [69] A. Arafat, J.C. Jansen, A.R. Ebaid, H.V. Bekkum, Zeolites, 13(1993)162.
    [70] C. G. Wu, T. Bein, Chem. Commun., (1996) 925.
    [71] S. Zijlstra, T. J. de Groot, L. P. Kok, G. M. Visser, W. Vaalburg, J. Org. Chem., 58 (1993) 1643.
    [72] M. D. Taylor, A. D. Roberts, R. Nickels, J. Nucl. Med. Biol.,23 (1996)605.
    [73] D. Patil, B. Mutsuddy, R. Grrard, J. Microwave Power Electromagn. Eng., 27 (1992) 49.
    [74] C. C. Landry, A. R. Barron, Science, 260 (1993) 1653.
    [75] S. Komarneni, R. K. Rajha, H. Katuki, Mater. Chem. Phys., 61(1999) 50.
    [76] R. Hicks, G. Majetich, J. Microwave Power Electromagn. Eng., 30(1995)27.
    [77] R. A. Abramovitch, Org. Prep. Proc. Int., 23 (1991) 283.
    [78] R. N. Gedye, W. Rank, K. C. Westaway, Can. J. Chem., 69 (1991) 706.
    [79] T. R. J. Dinesen, M.Y. Tse, M. C. Depew, J. K. S. Wan, Res. Chem. Intermed., 15 (1991) 113.
    [80] J. R. J. Pare, J. M. R. Belanger, S. S. Stafford, Trends Anal. Chem., 13 (1994) 176.
    [81] G. Bond, R.S. Moyes, D. A. Whan, Catal. Today, 17 (1993) 429.
    [82] A. G. Saskia, Chem. Soc. Rev., 26 (1997) 233 .
    [83] W. Yuji, K. Hiromitsu, S. Takao, M. Hirotaro, S. Takayuki, K. Takayuki, Y. Shozo, Chem. Lett., 7 (1999)607.
    [84] D. L. Boxall, G. A. Deluga, E. A. Kenik, W. D. King, C. M. Lukehart, Chem. Mater., 13 (2001) 891.
    [85] K. W. Gallis, C. C. Landry, Adv. Mater., 13 (2001) 23.
    [86] A. Cirera, A. Vila, A. Dieguez, A. Cabot, A. Cornet, J.R. Morante, Sensors Actuators B, 64 (2000) 65.
    [87] D. L. Boxall, C. M. Lukehart, Chem. Mater., 13 (2001) 806.
    [88] (a) O. Palchik, J. J. Zhu, A. Gedanken, J. Mater. Chem., 10 (2000) 1251; (b) O. Palchik, R. Kerner, J.J. Zhu, A. Gedanken, J. Solid State Chem., 154 (2000) 530; (c) O. Palchik, S. Avivi, D. Pinkert, A. Gedanken, Nanostruct. Mater., 11 (1999) 41; (d) J.J. Zhu, O. Palchik, S.G. Chen, A. Gedanken, J. Phys. Chem. B, 104 (2000) 7344.
    [89] J. A. Ayllon, A. M. Peiro, L. Saadoun, E. Vigil, X. Domenech, J. Peral, J. Mater. Chem., 10 (2000) 1911.
    [90] (a) X. H. Liao, J. M. Zhu, J. J. Zhu, J. Z. Xu, H. Y. Chen, Chem. Commun., (2001) 937; (b) J. J. Zhu, J. M. Zhu, X. H. Liao, J. L. Fang, M. G. Zhou, H. Y. Chen, Mater. Lett., 53 (2002) 12; (c) X. H. Liao, J. J. Zhu, W. Zhong, H. Y. Chen, Mater. Lett., 50 (2001) 341.
    [91] W. Tu, H. Liu, J. Mater. Chem., 10 (2000) 2207.
    [92] J. C. Jansen, A. Arafat, A. K. Barakat, H. Van Bekkum, Synthesis of Microporous Materials, 1 (1992) 507.
    [93]張振昌,“化學水浴沈積法成長硫化鎘薄膜之研究”,國立中山大學碩士論文 (2006).
    [94]薛永浚,“不同升溫條件對真空蒸鍍熱氧化法製備氧化鎵薄膜形態及感測特性之研究”,國立成功大學碩士論文 (2006).
    [95]劉旂甫,“水及正丁醇蒸氣在TiO2(6-12nm)與甘露糖(8-25nm)電與中性微粒上之非均勻相核凝”,國立成功大學碩士論文 (2006).
    [96]Moreau,W.M.,Semiconductor Lithography, Plenum Press,New York(1988).
    [97]A.G. Emslie, F.T. Bonner, L.G. Peck, Flow of a viscous liquid on a rotating disk, J. Appl. Phys. 29 (1958) 858–862.
    [98]Bornside,D.E.,Macosko, C.W., and Scriven, L.E.,"0n the Modeling of Spin Coating",J﹒Imaging Tech., Vol.13 (1987) pp.122-130﹒
    [99]Daughton,W.J﹒and F.L. Givens, "On the uniformity of films:a new technique applied to polyimides",J. Electrochem.Soc.,Vol.126 (1979) pp.269-276﹒
    [100] ETEC 1120 Electro-Principles1”Solid State Principals-Atomic Theory”.
    [101] M.G.Burt,”The Justification for Applying the Effective-mass. Approximation to Microstuctures “,J.Phy.Condens.Matter, 4 (1992) 6651-6690
    [102] B. D. Cullity, “Elements of X-Ray Diffraction” 2th Edition, Published by Addison-Wesley(1978).
    [103] H. Metin, R. Esen, “Annealing studies on CBDgrown CdS thin films”258(2003)141.
    [104] A. Henglein, Chem. Rev., 89 (1989) 1861.
    [105] L. Spanhel, M. Haase, H. Weller, A. Henglein, J. Am. Chem. Soc., 109 (1987) 5649.
    [106] R. He et al., Colloids and Surfaces A: Physicochem. Eng. Aspects, 220 (2003) 151.
    [107]林全雯,”微波法製備硫化鎘奈米微粒及電噴霧法製備硫化鎘薄膜及光電性質之研究”,國立成功大學碩士論文 (2005).
    [108]黃緯苓,”電噴霧法製備硫化鎘及光電性質之研究”,國立成功大學碩士論文 (2004).
    [109]Zahn, D. R. T.; Maierhofer, Ch.; Winter, A.; Reckzugel, M.; Srama, R.; Thomas, A.; Horn, K.; Richter, W. J. Vac. Sci. Technol. B, 9 (1991) 2206.
    [110]V. Sivasubramanian, A. K. Arora, M. Premila, Physical. E, 31(2006)93.
    [111]Takashi Ogi , Luis Balam Modesto-Lopez , Ferry Iskandar , Kikuo Okuyama, Colloids and Surfaces A: Physicochem. Eng. Aspects,297(2007)71.
    [112]A.G. Emslie, F.T. Bonner, L.G. Peck, Flow of a viscous liquid on a rotating disk, J. Appl. Phys. 29 (1958) 858–862.

    下載圖示 校內:2009-07-18公開
    校外:2009-07-18公開
    QR CODE