簡易檢索 / 詳目顯示

研究生: 黃彥庭
Huang, Yen-Ting
論文名稱: 溶劑親和性對聚噻吩與聚甲基丙烯酸甲酯相分離及後續晶相成長的影響
Impact of the solvent affinity on the phase separation and subsequent crystallization behavior within P3HT/PMMA binary thin film
指導教授: 阮至正
Ruan, Jr-Jeng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 64
中文關鍵詞: 聚(3-己烷基噻吩)甲基丙烯酸甲酯相分離晶相成長
外文關鍵詞: P3HT, PMMA, solvent affinity, phase separation
相關次數: 點閱:130下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討導電高分子聚(3-己烷基噻吩)( P3HT)和絕緣高分子聚甲基丙烯酸甲酯(PMMA)的混摻系統中,導電高分子於不同形態分佈(團狀區域、連續分佈區域)的晶相成長。藉由溶劑親和性及混摻比例來瞭解P3HT/PMMA混摻系統,析出形成薄膜的形貌,再經不同的溫度持溫觀察其晶相成長情形。另外,藉由添加可和P3HT互溶的六甲基苯(HMB)小分子於混摻系統中,希望瞭解對P3HT/PMMA混摻系統中的影響。

    溶劑(氯仿、甲苯)與P3HT/PMMA混摻系統間親和性的差異,使P3HT和PMMA在溶液中溶解度不同,而導致於在旋轉塗佈形成薄膜的過程中,析出先後順序的不同,而產生不同成份分佈的形貌。同時也藉由混摻比例改變的實驗觀察,可合理的推論出P3HT與PMMA的相分離即已在溶液中發生完成。

    於P3HT/PMMA混摻中添加可和P3HT互溶的六甲基苯(HMB)後,發現可以形成一均勻的二元相,即P3HT/HMB與PMMA的相分離,而這個發現可使我們僅需少混摻比例P3HT成份,即可配製出P3HT的連續分佈區域。除此之外,隨後觀察到HMB的添加可以改變P3HT析出的趨勢,於氯仿溶液中除了改變析出的先後順序外,亦也影響成份析出的連續性而導致出現不同的薄膜表面形貌。

    當混摻比例為P3HT/PMMA=10/90時,P3HT會以團狀區域的分佈於薄膜中。而發現由甲苯溶液析出的位於膜底層受PMMA區域環繞的P3HT團狀區域,相較於從氯仿溶液析出的於PMMA連續區域上的P3HT團狀區域,其晶相發展的趨勢來得顯明顯,即可觀察到於團狀區域內的P3HT結晶纖維數目多且密集,而又可於相對低的持溫(結晶)溫度發展出較低的(100)繞射峰半高寬。由此推論出P3HT與PMMA的界面可以幫助形成P3HT晶核,促使晶相的出現。而後續的P3HT連續分佈區域的晶相發展結果也證實此推論。

    The effects of solvent affinity and mixing ratio in solutions on phase separation behavior of a binary blend system of poly(3-hexylthiophene- 2,5-diyl)(P3HT) and poly(methyl methacrylate)(PMMA) have been explored. The solvent affinity was found critical for the precipitation sequence of dissolved components during spin coating, which provides the background to elucidate the occurrence of vertical phase separation. The morphologies of horizontal phase separation are dominated by the mixing ratios of these two immiscible constituents. Upon obtained results, both vertical and horizontal phase separation are able to be manipulated comprehensively for achieving the needed distribution of semiconductive conjugated polymers within thin film. Furthermore, the growth of thicker fibrous P3HT crystals was found when sufficient P3HT/PMMA interfacial areas were established by the resultant morphology of phase separation, which has not been unveiled before.

    摘要 I 英文延伸摘要 II 致謝 VII 目錄 VIII 表目錄 X 圖目錄 XI 第一章 緒論 1 1-1 前言與研究動機 1 第二章 文獻回顧 2 2-1 PMMA混摻對有機光電元件的影響 2 2-1-1 P3HT/PMMA混摻系統 2 2-1-2 P3HT/PMMA混摻系統的應用 5 2-1-3 PMMA混摻有機光電高分子增進環境穩定性 8 2-2 晶相成長受到成份分佈的影響 10 2-3 混摻系統添加寡聚物的影響 13 第三章 實驗材料與方法 15 3-1 實驗材料 15 3-2 實驗儀器 18 3-3 實驗流程 22 3-4 實驗步驟 24 第四章 結果與討論 26 4-1 溶劑親和性對P3HT/PMMA相分離的影響 26 4-1-1 氯仿溶液析出之混摻薄膜 26 4-1-2 甲苯溶液析出之混摻薄膜 28 4-1-3 六甲基苯(HMB)的添加對混摻薄膜內成份分佈的影響 30 4-2 P3HT團狀區域內的晶相成長 34 4-2-1 位於PMMA連續區域上之P3HT團狀區域內的晶相成長 34 4-2-2 受到PMMA區域環繞之P3HT團狀區域內的晶相成 41 4-3 P3HT之連續網狀區域的晶相成長 48 4-3-1 薄膜上層P3HT連續分佈區域內的晶相成長 48 4-3-2 薄膜底層P3HT連續分佈區域內的晶相成長 53 4-4 P3HT之大面積連續網狀區域的晶相成長 57 4-5 P3HT/PMMA混摻系統添入HMB小分子的影響 59 第五章 結論 62 參考文獻列表 63

    1.Guanghao Lu, Haowei Tang, Yunpeng Qu, Ligui Li, and Xiaoniu Yang, Macromolecules, 2007, 40, (18), 6579-6584.
    2.J. Jaczewska, A. Budkowski, A. Bernasik, E. Moons, and J. Rysz, Macromolecules, 2008, 41, (13), 4802-4810.
    3.Shiwei Wang, Zhuo Chena and Yao Wang, Chem. Commun., 2015, 51, (4), 765-767.
    4.Yuzhen Wang, Zhaobin Chen, Jiayue Chen, Yunpeng Qu, and Xiaoniu Yang, Journal of Macromolecular Science, Part B: Physics, 2013, 52, 1388–1404.
    5.Cui Mao, Yutian Zhu, and Wei Jiang, ACS Appl. Mater. Interfaces, 2012, 4, 5281−5286
    6.Longzhen Qiu, Jung Ah Lim, Xiaohong Wang, Wi Hyoung Lee, Minkyu Hwang, and Kilwon Cho, Adv. Mater., 2008, 20, 1141–1145.
    7.Xiaohong Wang, Wi Hyoung Lee, Guobing Zhang, Xianghua Wang, Boseok Kang, Hongbo Lu, Longzhen Qiu, and Kilwon Cho, J. Mater. Chem. C, 2013, 1, 3989–3998.
    8.Loig Kergoat, Nicolas Battaglini, Luciano Miozzo, Benoit Piro, Minh-Chau Pham, Abderrahim Yassar, Gilles Horrowitz, Organic Electronics, 2011, 12, 1253–1257.
    9.Beng S. Ong, Yiliang Wu, Ping Liu, and Sandra Gardner, J. AM. CHEM. SOC., 2004, 126 , 3378-337.
    10.Ana Claudia Arias, Fred Endicott, and Robert A. Street, Adv. Mater., 2006, 18, 2900–2904.
    11.S. Hoshino, M. Yoshida, S. Uemura, T. Kadzasa, N. Takada, T. Kamata, K. Yase, J. Appl. Phys. 2004, 95,(9), 5088-5093.
    12.B. S. Ong, Y. Wu, P. Liu, S. Gardner, J. Am. Chem. Soc., 2004, 126, (11) 3378-3379.
    13.A. C. Arias, J. Macromol. Sci., Polym. Rev., 2006, 46, 103-125.
    14.A. C. Arias, F. Endicott, R. A. Street, Adv. Mater., 2006, 18, 2900-2904.
    15.(11)Xiaoniu Yang, Xiaohua Kong, Susheng Tan, Gao Li, Wei Ling and Enle Zhou, Polym Int , 2000, 49, 1525¬¬¬-1528.
    16.Weinhold S, Litt MH and Lando JB, Macromolecules, 1980, 13, 1178-1183.
    17.Wei-Min Hou, Jian-Jun Zhou, Zhi-Hua Gan, An-Chang Shi, Chi-Ming Chan, Lin Li, Polymer, 2007, 48, 4926-4931.
    18.He Y, Zhu B, Kai WH, Inoue Y, Macromolecules, 2004, 37, (9), 3337-3345.
    19.He Y, Zhu B, Kai WH, Inoue Y, Macromolecules 2004, 37, (9), 8050-8056.
    20.Kaito A, Polymer, 2006, 47, 3548-3556
    21.Zhang JM, Sato H, Furukawa T, Tsuji H, Noda I, Ozaki Y, J Phys Chem B 2006, 110, 24463-24471.
    22.Arnal ML, Muller AJ, Maiti P, Hikosaka M. Macromol, Chem Phys, 2000, 201, 2493-2504.
    23.Akpalu, Y. A.; Karim, A.; Satija, S. K.; Balsara, N. P., Macromolecules 2001, 34, (6), 1720-1729.
    24.Wang, P.; Koberstein, J. T., Macromolecules, 2004, 37, (11), 5671-5861.
    25.Harada, A.; Tran-Cong, Q., Macromolecules, 1996, 29, (13), 4801-4803.
    26.Narong An, Yuming Yang, and Lisong Dong, Macromolecules, 2007, 40, (2), 306-311.
    27.Eunhee Lim, Sungkoo Lee and Kyeong K. Lee, Chem. Commun., 2011, 47, 914–916.
    28.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 2005, 4, 864-868.
    29.Qi Zhang, Min Wang and Karen L. Wooley, Current Organic Chemistry, 2005, 9, 1053-1066.
    30.R.T. Tol, V.B.F. Mathot, G. Groeninckx, Polymer, 2005, 46, 2955–2965.
    31.R.T. Tol, V.B.F. Mathot, G. Groeninckx, Polymer, 2005, 46 , 369–382.

    下載圖示 校內:2020-09-09公開
    校外:2020-09-09公開
    QR CODE