| 研究生: |
陳郁麒 Chen, Yu-Chi |
|---|---|
| 論文名稱: |
使用機率類神經網路以及兩層混淆字元處理的停車場辨識系統 License Plate Recognition System for Parking Lots Using Probabilistic Neural Network and 2-layer Ambiguous Character Handling |
| 指導教授: |
連震杰
Lien, Jenn-Jier James |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 車牌辨識 |
| 外文關鍵詞: | License Plate Recognition |
| 相關次數: | 點閱:106 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著經濟持續發展,為了生活上的必須而購買汽車的人數不斷增加,基於這個理由,自動化的車牌辨識技術便是實現智慧型運輸系統(Intelligent Transport System, ITS)的一項關鍵性功能。
我們所發展的車牌辨識系統可適用於台灣各種車輛的車牌,整個系統分為三大部分,第一是利用同心視窗掃描法(Sliding Concentric Windows, SCW)從影像中偵測出車輛的車牌區域,第二步驟則是用連通物件表示法(Connected-Component Labeling)切割出車牌上的每個字元,最後交給使用機率類神經網路(Probabilistic Neural Networks, PNN)來決定影像中的字元類別,並針對容易混淆的字元設計了兩層進一步的辨識處理(2-layer Ambiguous Character Handling)。
本系統在1095張車輛影像以及500段停車場出入影片中,對車牌有接近98%的辨識率,針對字元而言則有99%的高辨識率。
Due to the development of economy, more and more people buy cars for living. For this reason, automatic license plate recognition technology is a critical function in the application of the Intelligent Transport System (ITS).
The license plate recognition system we develop is applicable to all kinds of license plates in Taiwan; the whole system consists of three parts, firstly, using Sliding Concentric Windows (SCW) to detect the region of license plate in the image, secondly, the connected-component labeling is used for segmenting each character in the license plate, and finally the characters are decided by a Probabilistic Neural Networks (PNN). And for the ambiguous characters, a 2-layer approach is used for further recognition.
In 1095 cars and 500 image sequences, the recognition rate for license plate and characters are 98% and 99%, respectively.
[1] C.N. Anagnostopoulos, I. Anagnostopoulos, V. Loumos, and E. Kayafas, “A license plate recognition algorithm for Intelligent Transportation System applications,” IEEE Transactions on Intelligent Transportation Systems, Vol. 7, No. 3, pp. 377-392, 2006.
[2] Y. Amit, D. Geman, and X. Fan, “A Coarse-to-Fine Strategy for Multi-Class Shape Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 26, No. 12, pp. 1606-1621, 2004.
[3] S. L. Chang, L. S. Chen, Y. C. Chung, and S. W. Chen, “Automatic License Plate Recognition,” IEEE Transactions on Intelligent Transportation Systems, Vol. 5, No. 1, pp. 42-53, 2004.
[4] G. Cao, J. Chen, and J. Jiang, “An Adaptive Approach to Vehicle License Plate Localization,” 2003. IECON '03. The 29th Annual Conference of the IEEE Industrial Electronics Society, Vol.2, pp. 1786-1791, 2003.
[5] L. Dlagnekovin, “License Plate Detection Using AdaBoost,” La Jolla: Comput. Sci. Eng. Dept., Univ. California San Diego, Mar. 2004.
[6] Y. Dai, H. Ma, J. Liu, and L. Li, “A high performance license plate recognition system based on the web technique,” 2001. Proceedings. 2001 IEEE Intelligent Transportation Systems, pp. 325-329, 2001.
[7] S. Dalal, and L. Malik, “A Survey of Methods and Strategies for Feature Extraction in Handwritten Script Identification,” Emerging Trends in Engineering and Technology, pp. 1164-1169, 2008.
[8] J. M. Guo, and Y. F. Liu, “License Plate Localization and Character Segmentation with Feedback Self-Learning and Hybrid Binarization Techniques,” IEEE Transactions on Vehicular Technology, Vol. 57, No. 3, pp. 1417-1424, 2008.
[9] H. Huang, M. Gu, and H. Chao, “An Efficient Method of License Plate Location in Natural-scene Image,” 2008. FSKD '08. Fifth International Conference on Fuzzy Systems and Knowledge Discovery, Vol. 4, pp.15-19, 2008.
[10] C. T. Hsieh, Y. S. Juan, and K. M. Hung, “Multiple License Plate Detection for Complex Background,” 2005. AINA 2005. 19th International Conference on Advanced Information Networking and Applications, Vol. 2, pp. 389-392, 2005.
[11] Y. P. Huang, S. Y. Lai, and W. P. Chuang, “A Template-Based Model for License Plate Recognition,” Sensing and Control, 2004 IEEE International Conference on Networking, Vol. 2, pp.737-742, 2004.
[12] X. He, L. Zheng, Q. Wu, W. Jia, B. Samali, and M. Palaniswami, “Segmentation of Characters on Car License Plates,” 2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 399-402, 2008.
[13] Y. Hu, F. Zhu, and X. Zhang, “A Novel Approach for License Plate Recognition Using Subspace Projection and Probabilistic Neural Network,” in Lecture Notes in Computer Science, Vol. 3497, pp. 216-221, 2005.
[14] W. Jia, H. Zhang, X. He, and M. Piccardi, “Mean Shift for Accurate License Plate Localization,” 2005. Proceedings. 2005 IEEE Intelligent Transportation Systems, pp. 566-571, 2005.
[15] F. Kahraman, B. Kurt, and M. Gökmen, “License Plate Character Segmentation Based on the Gabor Transform and Vector Quantization,” Lecture Notes on Computer Science, Vol. 2869, pp. 381-388, 2003.
[16] K.K. Kim, K.I. Kim, J.B. Kim, and H. J. Kim, “LEARNING-BASED APPROACH FOR LICENSE PLATE RECOGNITION,” 2000. Proceedings of the 2000 IEEE Signal Processing Society Workshop Neural Networks for Signal Processing X, Vol. 2, pp. 614-623, 2002.
[17] S. Kim, D. Kim, Y. Ryu, and G. Kim, “A Robust License-Plate Extraction Method under Complex Image Conditions,” 2002. Proceedings. 16th International Conference on Pattern Recognition, Vol. 3, pp. 216-219, 2002.
[18] C. L. Liu, “Normalization-Cooperated Gradient Feature Extraction for Handwritten Character Recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 8, pp.1465-1469, 2007.
[19] D. Montana, “A Weighted Probabilistic Neural Network,” Advances in Neural Information Processing Systems 4, pp. 1110-1117, 1992.
[20] C. D. Nguyen, M. Ardabilian, and L. Chen, “Robust Car License Plate Localization using a Novel Texture Descriptor,” 2009. AVSS '09. Sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 523-528, 2009.
[21] J.A.G. Nijhuis, M.H. Ter Brugge, K.A. Helmholt, J.P.W. Pluim, L. Spaanenburg, R.S. Venema, and M.A. Westenberg, “Car License Plate Recognition with Neural Networks and Fuzzy Logic,” 1995. Proceedings., IEEE International Conference on Neural Networks, Vol. 5, pp. 2232-2236, 1995.
[22] C. Paolo, F. Paolo, G. Mario Notturno, and S. Flavio, “Optical recognition of motor vehicle license plates,” IEEE Transactions on Vehicular Technology, Vol. 44, No. 4, pp. 790-799, 1995.
[23] X. Pan, X. Ye, and S. Zhang, “A Hybrid Method for Robust Car Plate Character Recognition,” 2004 IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, pp. 4733-4737, 2004.
[24] R. D. Romero, D. S. Touretzky, and R. H. Thibadeau, “Optical Chinese Character Recognition Using Probabilistic Neural Networks,” Pattern Recognition, Vol.30, pp. 1279-1292, 1997
[25] D.F. Specht, “Probabilistic neural networks,” Neural Networks, Vol. 3, No. 1, pp. 109-118, 1990.
[26] P.V. Suryanarayana, S.K. Mitra, A. Banerjee, and A.K. Roy, “A Morphology Based Approach for Car License Plate Extraction,” 2005 Annual IEEE INDICON, pp. 24-27, 2005.
[27] J. Sauvola, and M. Pietikäinen, “Adaptive document image binarization, ”Pattern Recognit, Vol. 33, No. 2, pp. 225-236, 2000.
[28] O. D. Trier, A. K. Jain, and T. Taxt, “Feature Extraction Methods For OCR-A Survey,” Patten Recognition, Vol. 29, No. 4, pp. 641-662, 1996.
[29] A. Taleb-Ahmed, D. Hamad, and G. Tilmant, “Vehicle license plate recognition in marketing application,” 2003. Proceedings. IEEE Intelligent Vehicles Symposium, pp. 90-94, 2003.
[30] F. Yang, Z. Ma, and M. Xie, “A Novel Approach for License Plate Character Segmentation,” 2006 1ST IEEE Conference on Industrial Electronics and Applications, pp. 1-6, 2006.
[31] X. You, and Y. Y. Tang, “Wavelet-Based Approach to Character Skeleton,” IEEE Transactions on Image Processing, Vol. 16, No. 5, pp. 1220-1231, 2007.
[32] N. Zimic, J. Ficzko, M. Mraz, and J. Virant, “The fuzzy logic approach to the car number plate locating problem,” 1997. IIS '97. Proceedings Intelligent Information Systems, pp. 227-230, 1997.
[33] H. Zhang, W. Jia, X. He, and Q. Wu, “Learning-Based License Plate Detection Using Global and Local Features,” 2006. ICPR 2006. 18th International Conference on Pattern Recognition, Vol. 2, pp.1102-1105, 2006.
[34] H. Zhao1, C. Song, H. Zhao, and S. Zhang, “License Plate Recognition System Based on Morphology and LS-SVM,” 2008. GrC 2008. IEEE International Conference on Granular Computing, pp. 826-829, 2008.
[35] D. Zheng, Y. Zhao, and J. Wang, “An efficient method of license plate location,” Pattern Recognition Letters, Vol. 26, No. 15, pp. 2431-2438, 2005.