| 研究生: |
蔣昆憲 Jiang, Kun-Sian |
|---|---|
| 論文名稱: |
鈦擴張網基板上沉積氧化物電紡奈米纖維及其電致變色之研究 Electrospun Metal Oxide Nanofibers onto Titanium Expanded Mesh for Electrochromic Applications |
| 指導教授: |
郭昌恕
Kuo, Chang-Shu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 電致變色 、電化學沉積 、電紡絲 、二氧化鈦氧化鎢 、鈦擴張網 |
| 外文關鍵詞: | Electrochromic, Electrodeposition, Electrospinning, Nanofibers, Titanium oxide, Tungsten oxide, Titanium expanded meshes |
| 相關次數: | 點閱:57 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二氧化鈦奈米纖維已經成功地利用電紡絲技術沉積於鈦擴張網上,其中鈦擴張網作為取代銦錫氧化物的基板。藉由高分子輔助配方製備的二氧化鈦奈米纖維具有隨機分佈,奈米尺度下的光散射行為。其中,電紡絲與鈦網的附著力藉由在鈦網製作二氧化鈦預製層及其他方法研究探討其影響。在利用電紡絲方法將二氧化鈦奈米纖維沉積於鈦網上後,應用電化學沉積方法將氧化鎢沉積於二氧化鈦奈米纖維上,形成高光學對比可應用於電致變色的核殼結構狀二氧化鈦-氧化鎢奈米複合纖維。在用電化學方法沉積氧化鎢於二氧化鈦奈米纖維時,氧化鎢會因與導電鈦網不同距離而呈現不均勻的分佈。為了得到均勻且一致的氧化鎢殼層,此研究檢視不同電壓下直流電與交流電的電鍍結果。最後,此研究中使用了三種不同金屬線與孔洞比例的鈦網來做為電致變色材料之基板,審視其電致變色性能的影響。
Titania nanofibers were successfully electrospun onto the titanium expanded meshes, which served as the replacement of ITO substrates. Randomly deposited titania nanofibers from the polymer-assisted electrospinning were conducted for the fabrication of the nano-scaled fiber scaffolds with light scattering behavior. The adhesion between titania nanofibers and the titanium meshes was carefully investigated via the prefabricated layer on titanium meshes and other approaches. Titanium meshes deposited with electrospun titania nanofibers were then electrodeposited with tungsten oxide as the conformal outer layers. Obtained TiO2/WO3 core-sheath nanofibers exhibited the high optical density as the electrochromic device. During the electrodeposition of WO3, it showed the deposition distribution as a function of distance to the conductive titanium meshes. For uniform and consistence WO3 outer layers, the electrodepositions were examined under the different applied voltages in both DC and AC voltages. Finally, three titanium meshes with different metal/hole ratios with WO3-coated titania nanofibers were investigated in their electrochromic performance.
1. Minami, T., New n-type transparent conducting oxides. MRS bull 2000, 25 (08), 38.
2. Sheng, S.; Fang, G. J.; Li, C.; Xu, S.; Zhao, X., p-typet transparent conducting oxides. Phys. Status Solidi A-Appl. Mat. 2006, 203 (8), 1891-1900.
3. Hui, L.; Junsheng, Y.; Shuangling, L. Yadong, J.; Nana, W., Fabrication and properties of DC magnetron sputtered indium tin oxide on flexible plastic substrate. J. Mater. Sci. Tech. 2009, 25 (1), 119-122.
4. O'Dwyer, C.; Szachowicz, M.; Visimberga, G.; Lavayen, V.; Newcomb, S. B.; Torres, C. M. S., Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices. Nat. Nanotechnol. 2009, 4 (4), 239-244.
5. Mbarek, H.; Saadoun, M.; Bessais, B., Screen-printed tin-doped indium oxide (ITO) films for NH3 gas sensing. Mater. Sci. Eng. C-Biomimetic Supramol. Syst. 2006, 26 (2-3), 500-504.
6. Konstantinos, A.; Darran, R.; Stephen, N., Pulsed laser deposition of indium tin oxide films on flexible polyethylene naphthalate display substrates at room temperature. Thin Solid Films 2010, 518 (10), 2623-2627.
7. Kim, S.; Choi, Y.; Park, G.; Jin, W., Transparent conductive ITO thin films through the sol-gel process using metal salts. Thin Solid Films 1999, 347 (1-2), 155-160.
8. Iijima, S.; Ichihashi, T., Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363 (6430), 603-605.
9. Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C., Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391 (6662), 59-62.
10. Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M., Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391 (6662), 62-64.
11. Ebbesen, T. W.; Lezec, H. J.; Hiura, H.; Bennett, J. W.; Ghaemi, H. F.; Thio, T., Electrical conductivity of individual carbon nanotubes. Nature 1996, 382 (6586), 54-56.
12. Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S., Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4 (1), 35-39.
13. Yao, Z.; Kane, C. L.; Dekker, C., High-field electrical transport in single-wall carbon nanotubes. Phys. Rev. Lett. 2000, 84 (13), 2941-2944.
14. Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; McIntyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. J., High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1 (4), 241-246.
15. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A., Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438 (7065), 197-200.
16. Geim, A. K.; Novoselov, K. S., The rise of graphene. Nat. Mater. 2007, 6 (3), 183-191.
17. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Rev. Mod. Phys. 2009, 81 (1), 109-162.
18. Fang, T.; Konar, A.; Xing, H. L.; Jena, D., Carrier statistics and quantum capacitance of graphene sheets and ribbons. Appl. Phys. Lett. 2007, 91 (9).
19. Zhang, Y. B.; Small, J. P.; Amori, M. E. S.; Kim, P., Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 2005, 94 (17).
20. Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3 (5), 270-274.
21. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B., High-throughput solution processing of large-scale graphene. Nat. Nanotechnol. 2009, 4 (1), 25-29.
22. Ghosh, D. S.; Martinez, L.; Giurgola, S.; Vergani, P.; Pruneri, V., Widely transparent electrodes based on ultrathin metals. Opt. Lett. 2009, 34 (3), 325-327.
23. Pode, R. B.; Lee, C. J.; Moon, D. G.; Han, J. I., Transparent conducting metal electrode for top emission organic light-emitting devices: Ca-Ag double layer. Appl. Phys. Lett. 2004, 84 (23), 4614-4616.
24. Kang, M. G.; Kim, M. S.; Kim, J. S.; Guo, L. J., Organic solar cells using nanoimprinted transparent metal electrodes. Advanced Materials 2008, 20 (23), 4408-4413.
25. Kang, M. G.; Guo, L. J., Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes. Advanced Materials 2007, 19 (10), 1391-+.
26. Okada, K.; Matsui, H.; Kawashima, T.; Ezure, T.; Tanabe, N., 100 mm x 100 mm large-sized dye sensitized solar cells. J. Photochem. Photobiol. A-Chem. 2004, 164 (1-3), 193-198.
27. He, W.; Qiu, J. J.; Zhuge, F. W.; Li, X. M.; Lee, J. H.; Kim, Y. D.; Kim, H. K.; Hwang, Y. H., Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells. Nanotechnology 2012, 23 (22).
28. Xiao, Y. M.; Wu, J. H.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Fan, L. Q.; Lan, Z., The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells. J. Power Sources 2012, 208, 197-202.
29. Ito, S.; Ha, N. L. C.; Rothenberger, G.; Liska, P.; Comte, P.; Zakeeruddin, S. M.; Pechy, P.; Nazeeruddin, M. K.; Gratzel, M., High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chem. Commun. 2006, (38), 4004-4006.
30. Allen, R. G.; Lim, C.; Yang, L. X.; Scott, K.; Roy, S., Novel anode structure for the direct methanol fuel cell. J. Power Sources 2005, 143 (1-2), 142-149.
31. Shao, Z. G.; Lin, W. F.; Christensen, P. A.; Zhang, H. M., Ti mesh anodes prepared by electrochemical deposition for the direct methanol fuel cell. Int. J. Hydrog. Energy 2006, 31 (13), 1914-1919.
32. Wang, Q.; Shang, J.; Zhu, T.; Zhao, F. W., Efficient photoelectrocatalytic reduction of Cr(VI) using TiO2 nanotube arrays as the photoanode and a large-area titanium mesh as the photocathode. J. Mol. Catal. A-Chem. 2011, 335 (1-2), 242-247.
33. Carp, O. H., C. L.; Reller, A., Photoinduced reactivity of titanium dioxide. Progress in Solid State Chem 2004, 32 (1-2), 33-34.
34. Shangguan, W.; Yoshida, A.; Chen, M., Physicochemical properties and photocatalytic hydrogen evolution of TiO2 films prepared by sol-gel processes. Sol. Energy Mater. Sol. Cells 2003, 80 (4), 433-439.
35. Ovenstone, J.; Yanagisawa, K., Effect of hydrothermal treatment of amorphous titania on the phase change from anatase to rutile during calcination. Chem. Mater 1999, 11 (10), 2770-2774.
36. Shie, T. Y., Electrospun titanium dioxide nanofibers for hydrogen production by UV-induced water splitting. NCKU Master Thesis 2007.
37. Li, F. B.; Li, X. Z., Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Appl. Catalysis a-General 2002l, 228 (1-2), 15-27.
38. Li, F. B.; Li, X. Z., Photocatalytic properties of gold/gold ion-modified titanium dioxide for wastewater treatment. Applied Catalysis a-General 2002, 228 (1-2), 15-27.
39. Taylor, G., Electrically driven jets, proceedings of royal society of london A. Mathematical and Physical Sciences 1969, 313 (453).
40. Bange, K., Colouration of tungsten oxide films: A model for optically active coatings. Sol. Energy Mater. Sol. Cell 1999, 58 (1), 1-131.
41. Bange, K., Colouration of tungsten oxide films: A model for optically active coatings. Sol. Energy Mater. Sol. Cells 1999, 58 (1), 1-131.
42. Kalagi, S. S.; Mali, S. S.; Dalavi, D. S.; Inamdar, A. I.; Im, H.; Patil, P. S., Limitations of dual and complementary inorganic-organic electrochromic device for smart window application and its colorimetric analysis. Synth. Met 2011, 16 (11-12), 1105-1112.
43. Somani, P. R.; Radhakrishnan, S., Electrochromic materials and devices: present and future. Mater. Chem. Phys. 2003, 77 (1), 117-133.
44. Yoko, T.; Hu, L.; Kozuka, H.; Sakka, S., Photoelectrochemical properties of TiO2 coating films prepared using different solvents by the sol-gel method. Thin Solid Films 1996, 283 (1-2), 188.
45. Georg, A.; Georg, A.;Graf, W.; Wittwer, V., Switchable windows with tungsten oxide. Vacuum 2008, 82 (7), 730-735.
46. Granqvist, C. G.; Avendano, E.; Azens, A., Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films 2003, 42 (1-2), 201-211.
47. Shie, T. Y., Electrospun titanium dioxide nanofibers for hydrogen production by UV-induced water splitting. NCKU Master Thesis 2007.
48. . Okuya, M.; Nakade, K.; Kaneko, S., Porous TiO2 thin films synthesized by a spray pyrolysis deposition (SPD) technique and their application to dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2002, 70 (4), 425-435.
49. Zhang, J.; Tu, J. P.; Zhang, D.; Qiao, Y. Q.; Xia, X. H.; Wang, X. L.; Gu, C. D., Multicolor electrochromic polyaniline-WO3 hybrid thin films: One-pot molecular assembling synthesis. J. Mater. Chem 2011, 21 (43), 17316-17324.
50. Zhu, R.; Jiang, C. Y.; Liu, X. Z.; Liu, B.; Kumar, A.; Ramakrishna, S., Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Appl. Phys.Lett 2008, 93 (1), 013102-3.
51. Nazeeruddin, M. K. Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Baker, R. H.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. J. Am. Chem. Soc. 2001, 123 (8), 1613.
52. Rosseinsky, D. R.; Morthimer, R. J., Electrochromic systems and the prospects for devices. Adv. Mater. 2001, 13 (11), 783-793.
53. Somani, P. R.; Radhakrishnan, S., Electrochromic materials and devices: present and future. Materials Chemistry and Physics 2003, 77 (1), 117-133.
54. Kalyanasundaram, K.; Gratzel, M., Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord. Chem. Rev. 1998, 177, 347-414.
55. Porter, W. W.; Vaid, T. P.; Rheingold, A. L., Synthesis and characterization of a highly reducing neutral "extended viologen" and the isostructural hydrocarbon 4,4 '-Di-n-octyl-p-quaterphenyl. J. Am. Chem. Soc. 2005, 127 (47), 16559-16566.
56. Zhu, R.; Jiang, C. Y.; Liu, X. Z.; Liu, B.; Kumar, A.; Ramakrishna, S., Improved adhesion of interconnected TiO2 nanofiber network on conductive substrate and its application in polymer photovoltaic devices. Applied Physics Letters 2008, 93(1), 013102/1-013102/3.
57. Barbe, C. J.; Arendse, F.; Comte, P..; Jirousek, M.; Lenzmann, F.; Shklover, V.; Gratzel, M., Nocrystalline titanium oxide electrodes for photovoltaic applications. J. Am. Cera. Soc. 1997, 88 (12), 3157-3171.
58. Tacconi, N. R.; Chenthamarakshan, C. R.; Rajeshwar, K.; Pauporte, T.; Lincot, D., Pulsed electrodeposition of WO3-TiO2 composite films. Electrochem. Commu. Electrochem. Commu. 2003, 5 (3), 220-224.
59. Tacconi, N. R.; Chenthamarakshan, C. R.; Wouters, K. L.; MacDonnell, F. M.; Rajeshwar, K., Composite WO3-TiO2 films prepared by pulsed electrodeposition: morphological aspects and electrochromic behavior. Electroanalytical Chem. 2004, 566 (2), 249-256.
60. Chen, Y. L.; Chang., Y. H.; Huang, J. L.; Chen, I.; Kuo, C. S., Light scattering and enhanced photoactivities of electrospun titania nanofibers. J. Phys. Chem. C 2012, 112 (5), 3857-3865.
61. Chen, Y.-L., Light propagation and enhanced photocatalytic activities in electrospun titania nanofibers. NCKU Master Thesis 2009.
62. Yang, K.P.; Tungsten oxide based electrochromic devices with hight-aspect-ratio nanostructure and light scattering enhancement. NCKU Master Thesis 2012.
校內:2023-08-30公開