| 研究生: |
陳貫宇 Chen, Kuan-Yu |
|---|---|
| 論文名稱: |
鰭管式熱交換器之渦流產生器最佳幾何形狀預測 A Geometry Design Problem in Estimating the Optimal Shape of Vortex Generators for Finned-Tube Heat Exchangers |
| 指導教授: |
黃正弘
Huang, Cheng-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 系統及船舶機電工程學系 Department of Systems and Naval Mechatronic Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 矩形渦流產生器 、熱交換器 、最佳化設計 |
| 外文關鍵詞: | Levenberg-Marquardt Method, Heat exchanger, Block type vortex generator |
| 相關次數: | 點閱:115 下載:21 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在應用拉凡格式法(Levenberg-Marquardt Method)搭配程式語言Fortran與套裝軟體 CFD-ACE+,探討三維反算問題於強制對流情況下的熱交換器之矩形渦流產生器形狀與角度最佳化設計之研究。
一般的工程問題利用正算求解物理量,將已知條件輸入系統模式求解,稱為正算問題(Direct Problem)。而藉由其他可測量或計算的資料,反算得到物理量,這一類的問題我們稱之為反算問題(Inverse Problem)。反算設計問題也可用於最佳化設計問題,因反算設計問題可利用目前已知的參數或物理量,對複雜的工程問題作最佳化處理。
本研究探討矩形渦流產生器之形狀與角度對於不同配置下之熱交換器鰭片溫度的影響,在不增加渦流產生器質量的條件下達到散熱能力的最佳化,發現在經過最佳化形狀參數與夾角後,交錯式排列與common-flow-up的配置下,能比其他的配置擁有更佳的散熱能力。
觀察最佳化後的流場可發現,每個渦流產生器旁邊的流場條件皆不相同,最後使渦流產生器夾角獨立變化,發現這樣可以使熱交換器之散熱能力再一次的得到提升。
A numerical analysis was carried out to study the thermal-hydraulic characteristic of a 3-D laminar heat exchanger with block type vortex generator mounted behind the tubes by utilising the Levenberg-Marquardt Method (LMM) and a commercial package CFD-ACE+. The optimisation of vortex generator geometry parameters (L&H) and span angle (θ) were investigated numerically in this study. The thesis is aim to maximise the heat dissipation rate of target area among several inlet conditions (which indicate inlet = 2 m/s 、inlet = 3 m/s and inlet = 4 m/s)and arrangements(which include common-flow-up and common-flow-down for vortex generator, in-lined and staggered for tube) .The result shows that heat exchanger will reach the best heat dissipation rate when tubes are staggered and vortex generator are settled in common-flow-up.
1. Huang, C. H., Lu, J. J., and Ay, H., “A three-dimensional heat sink module design algorithm with experimental verification”, International Journal of Heat and Mass Transfer, Vol.54, pp. 1482–1492, 2011
2. Marquardt, D. M., “An algorithm for least-squares estimation of nonlinear parameters”, J. Soc. Indust. Appl. Math., Vol. 11, pp. 431–441, 1963
3. CFD-RC user’s manual, ESI-CFD Inc., 2013.
4. Fiebig, M., Kallweit, P., Mitra, N., and Tiggelbeck, S., “Heat Transfer Enhancement and Drag by Longitudinal Vortex Generator in Channel Flow”, Experimental Thermal and Fluid Science, Vol. 4, No. 1, pp. 103-114, 1991.
5. Torri, K., Kwak, K. M., and Nishino, K., “Heat Transfer Enhancement Accompanying Pressure-Loss Reduction with Winglet-Type Vortex Generators for Fin-Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, Vol. 45, No. 18, pp. 3795-3801, 2002.
6. Chu, P., He, Y. L., Lei, Y. G., Tian, L. T., and Li, R., “Three-Dimensional Numerical Study on Fin-and-Oval-Tube Heat Exchanger with Longitudinal Vortex Generators”, Applied Thermal Engineering, Vol.29, No. 5- 6, pp. 859-876, 2009.
7. Li, H. Y., and Chao, S. M., “Measurement of Performance of Plate-Fin Heat Sinks with Cross Flow Cooling”, International Journal of Heat and Mass Transfer, Vol 52, No. 13-14, pp. 2949-2955, 2009.
8. Li, H. Y., Chiang, M. H., Lee, C. I., and Yang, W. J., “Thermal Performance of Plate - Fin Vapor Chamber Heat Sinks”, International Communications in Heat and Mass Transfer, Vol. 37, No. 7, pp. 731-738, 2010.
9. Min, C., Qi, C., Kong, X., and Dong, J., “Experimental Study of Rectangular Channel with Modified Rectangular Longitudinal Vortex Generators”, International Journal of Heat and Mass Transfer, Vol. 53, No. 15-16, pp. 3023-3029, 2010.
10. Li, H. Y., Chen, C. L., Chao, G. F., “Enhancing heat transfer in a plate-fin heat sink using delta winglet vortex generators”, , 2013
11. .Jang, J. Y.,Wu, M. C., and Chang, W. J., “Numerical and experimental
studies of three-dimensional plate-fin and tube heat exchanger”,
International Journal Heat and Mass Transfer, Vol.39,No.14, pp.
3057-3066, 1996.
12. Ay, H., Jang, J. Y., and Yeh, J. N., “Local Heat Transfer Measurements ofPlate Finned-Tube Heat Exchangers by Infrared Thermography”,International Journal Heat and Mass Transfer, Vol.45, No.20,pp.4069-4078, 2002.
13. Jang, J.Y., and Chen, L. K., “Numerical analysis of heat transfer and
fluid-flow in a three-dimensional wavy-fin and tube heat exchanger”,
International Journal Heat and Mass Transfer, Vol.40,No.16,1997.
14. Wang, C. C., Jang, J. Y. and Chiou, N. F., “A Heat Transfer and Friction Correlation for Wavy Fin and Tube Heat Exchangers”, International Journal of Heat and Mass Transfer, Vol. 42, No.10, pp. 1919-1924, 1999.
15. Wang, C. C., Jang, J. Y. and Chiou, N. F., “Effects of Waffle Height on the Air-Side Performance of Wavy Fin-and-Tube Heat Exchangers”, Heat Transfer Engineering, Vol.20, No. 3, pp. 45-56, 1999
16. Atkin, K. N., Drakulic, R., Heikal, M. R., and Cowell, T.A., “Two-and three-dimensional numerical ,odes of flow and heat transfer over louvered fin arrays in compact heat exchanger” International Journal Heat and Mass Transfer Vol.41 pp.4063-4080, 1998.
17. Wang, C. C.,Chang, Y. P., Chi, and K. Y., Chang, Y. J., “A study of non-redirection louver fin and tube heat exchanger”, Proc. Instn. Mech engrs, Vol.212 part C, 1998.
18. Edwards F. J., and Alker G. J. R., “The Improvement of Forced Convection Surface Heat Transfer Using Surface Protrusions in the Form of (A) cubes and (B) Vortex Generators, Proc. 5th Int.Heat Transfer Conf.,Tokyo, Vol.2, pp244-248, 1974.
19. Tiggelbeck S., Mitra N. K., and Fiebig M., “Experimental Investigation of Heat transfer Enhancement and Flow Losses in a channel with Double Rows of Longitudinal Vortex Generators”, International Journal of Heat Mass Transfer, Vol.36 No.9, pp.2327-2337, 1993
20. J. P. van Doormal and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows”, Numerical heat transfer, Vol. 7 (1984), No. 2, pp. 147–163.