| 研究生: |
張育誠 Chang, Yu-Cheng |
|---|---|
| 論文名稱: |
混合並聯式五軸工具機PC-Based CNC系統設計與實現 Design and Implementation of PC-Based CNC System for Five-DOF PKM |
| 指導教授: |
陳響亮
Chen, Shang-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 製造工程研究所 Institute of Manufacturing Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | PC-Based 控制器 、NURBS 、插補 、逆向運動解 、D-H座標轉換矩陣 、並聯式工具機 |
| 外文關鍵詞: | PC-Based controller, NURBS, interpolation, inverse kinematic, D-H notation, parallel kinematic machine tool |
| 相關次數: | 點閱:186 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平行連桿機構由於具有結構剛性高與各桿件連結之累積誤差量較小的優點,而成為國內外工具機大廠積極投入研究發展的重要構型之一,其中控制器系統具有相當關鍵性,影響產品成敗甚巨。然而大部份CNC控制器市場由日本FANUC與德國SIEMENS佔有。雖其功能佳,但頗為昂貴,且相關核心技術無法自主。有鑑於此,本研究將以核心系統軟體為發展目標並配合相關原理之探討,經構型分析、軟體架構設計至系統整合,設計與開發一套能適應平行連桿機構需求的PC-based CNC系統。
本研究針對混合並聯式五軸工具機之CNC系統原理進行研究,在構型分析中,將西門子控制器所提供之可調參數定義為混合並聯式五軸工具機的誤差源,再利用理想化機台之D-H座標轉換矩陣依據誤差源之設定進行機構之逆向、順向運動解的推導,獲得刀尖點位置與各機件間之數學通式。再透過已建立之誤差模型進行誤差靈敏度分析,藉由變化工具機誤差參數之設定來模擬工件曲面的微量誤差,探討在不同之誤差參數對工具機造成不同之定位精度影響。同時,將逆向運動誤差模型嵌入控制器中,當機台存在誤差時,操作者即可透過本研究所設計之控制器的誤差補償功能模組進行即時誤差參數調校,以軟體補償之方式提升整體加工精度。
在軟體架構設計方面,將以VC++軟體建構一人機介面,其中包含了CNC系統及插補系統二大部分:CNC系統分為參數設定(set)、手動(jog)、程式編修(edit)、自動(auto) 、顯示(display);插補系統接收路徑所構成的點資料,利用第三章所推導之切削路徑插補演算法,以路徑函式與進給率的關係插值計算路徑位置,接著利用第二章所推導之機台逆向運動解依路徑位置計算各進給軸相對的進給量,最後將各軸的進給關係以程式呼叫控制卡之運動函式將路徑命令送出,以驅動馬達使其運轉。
在系統整合的方面,將整合逆向運動學解、逆向運動學解誤差模型、CNC系統、插補系統、外部週邊I/O系統,最後再以PC-Based 控制系統發展設備進行“混合並聯式五軸工具機”的實機測試,以驗證本研究所開發之控制系統之可用性與正確性。
Due to Parallel Kinematics Machine Tool has the advantages of high mechanism stiffness and low accumulated errors, they are one of the most important machine tools developed and researched actively by factory owners in the recent years. The key component of this machine tool is controller. Therefore, a core of the system software of the five-DOF PKM is investigated in this research. In the meanwhile, this research will collocate related theories to design and develop a new PC-Based CNC system which can be applied to parallel kinematics machine tool from analysis of the machine type, design of the software structure, to system integration.
In the analysis aspect, the parameters provided by the Siemens controller are defined as the error sources of the five-DOF PKM. The D-H notation method is adopted to solve the inverse and forward kinematics error models of this machine tool to get general formulas of the relationship between cutting locations and each of the driving axis. Furthermore, this paper will proceed the sensitivity analysis of error parameters based on the deriving result to investigate the effect between the tool ender of the position accuracy and the error parameters will be proceeded in this paper. Finally, the inverse kinematics error models will be built in CNC controller, the client can adjust error parameter immediately via the error compensation module of the CNC system that this paper developed.
In the software design aspect, the CNC system including the interpolation algorithm is programmed by Visual C++ programming language. There are five function modules in the developed CNC system including parameter setting module, manual module, editing module, auto module, and display module. The simulation result for NURBS curve, NURBS surface interpolation can be displayed by the CNC system. The interpolation parameters can be on-line input and modified on the CNC system.
In the system integration aspect, the controller system integrates inverse kinematics non-error and error model, CNC system, human machine interface, interpolation system, and the input/ouput control system of the peripheral. Finally, the CNC controller system are performed on a EPCIO-6000 motion control card of ITRI and act in the developed equipment of the PC-Based control system and five-DOF PKM to verify the usability and validity of the control system this paper developed.
1.D. Stewart, “A Platform with Six Degrees of Freedom,” Proceedings of the Institution of Mechanical Engineering (London), Vol. 180, pp. 371-386, 1965.
2.K. M. Lee, D. K. Shah, “Dynamic Analysis of a Three-Degrees-of-Freedom In-Parallel Actuated Manipulator,” IEEE Journal of Robotics and Automation, Vol. 4, No. 3, pp. 361-367, 1988.
3.康兆安, “TRR-XY混合式虛軸工具機之曲面插補原理及其電腦輔助製造系統研究,” 國立成功大學製造工程所碩士論文, 台南, 2000.
4.盧添財,“機器誤差分析,量測與誤差補償, ” 國立成功大學機械工程研究所碩士論文, 台南, 1991.
5.Schultschik, “The components of Volumetric accuracy,” Annals of CIRP, Vol.26, 1977.
6.P. M. Ferreira, Liu, “An analytical Quadratic Model for The Geometric Error of a Machine Tool,” Journal of Manufacturing Systems 5, No.1, pp. 51-63, 1986.
7.L. Piegl, “On NURBS: A Survey,” IEEE Computer Graphics and Application, Vol. 11, No. 1, pp. 55-71, Jan. 1991.
8.C. Blanc, C. Schlick, “Accurate Parameterization of Conics by NURBS,” IEEE Computer Graphics and Applications, pp. 64-71, Nov. 1996.
9.M. Gopi, S. Manohar, “A Unified Architecture for the Computation of B-Spline Curves and Surfaces,” IEEE Transactions on Parallel and Distributed Systems, Vol. 8, No 12, pp. 1275-1287, Dec. 1997.
10.M. Shpitalni, Y. Koren, and C. C. Lo, “Real-time curve interpolators”, Computer- Aided Design, Vol.26, No.11, pp.832-838, 1994.
11.唐偉德, “高速CNC之Spline曲線壓縮與NURBS插補技術,” 國立清華大學動力機械工程研究所碩士論文, 新竹, 2000.
12.陳志銘, “DSP-Based CNC 精密運動控制器及NURBS插值器之設計與實現,” 國立交通大學電機與控制工程研究所碩士論文, 新竹, 2000.
13.林明宗, “Windows NT環境下PC-Based即時控制架構之發展與應用,” 國立中正大學機械工程研究所碩士論文, 嘉義, 2000.
14.李家銘, “XYZA-C並聯式工具機之PC-Based CNC系統原理研究及其軟體實現,” 國立成功大學製造工程研究所碩士論文, 台南, 2002.
15.L.W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc, New York, 1999.
16.J. Denavit , R. S. Hartenberg, “A Kinematic Notation for Lower Pair Mechanisms Based on Matrices,” ASME J. Appl. Mech., Vol.77, pp.215-221, 1955.
17.任玉田, 焦振學, 王宏甫, 機床計算機數控技術, 北京理工大學出版社, 北京, pp. 98,1996.
18.S. P. Liang, “Development of a New Software System for NURBS-based surface machining,”國科會研究計畫NSC90-2212-E-006-096.