| 研究生: |
曾建豪 Tseng, Chien-Hou |
|---|---|
| 論文名稱: |
電鍍鋅10B21低碳鋼螺絲之氫脆破壞特性探討 Studies on Hydrogen Embrittlement of 10B21 Low Carbon Steel Screw Electro-plated with Zinc |
| 指導教授: |
呂傳盛
Lui, Truan-Sheng 陳立輝 Chen, Li-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 氫脆 、電鍍 、烘烤 、淬火回火 、回火溫度 |
| 外文關鍵詞: | hydrogen embrittlement, electroplating, baking, quench tempering, tempering temperature |
| 相關次數: | 點閱:85 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螺絲經過鍍鋅處理後容易導入氫原子或氫離子,氫原子或氫離子會藉由擴散而從鍍鋅層進入工件內部,並在晶界處生成氫分子聚集,對材料造成脆性破壞,通常會在使用環境中一段時間後才會發生破壞,因此又稱為延遲破壞(delay fracture) 。本研究採用10B21低碳硼鋼進行淬火回火熱處理,探討其熱處理後顯微組織及機械強度,以及將其鍍鋅螺絲成品進行烘烤除氫與改變淬火回火條件探討對於常溫及低溫下抵抗氫脆的能力。
經過淬火回火後之抗拉強度不論在260°C或320°C回火各30及 60分鐘都能夠高於1200MPa,顯微組織為回火麻田散體及細微雪明碳體中間夾雜再結晶肥粒體,較高溫回火可以觀察到類似塊狀的波來體結構。
本研究用10B21低碳鋼做成鍍鋅螺絲會發生嚴重氫脆,因此選擇以烘烤除氫及改變微觀組織為主要方法去測試可否有效抵抗,實驗結果顯示於215˚C下烘烤能有助於將氫原子或氫離子排出工件外,烘烤8小時於常溫及低應力雖不會發生氫脆破壞,但卻無法在低溫及高應力下使用;16小時的烘烤在低溫及高應力下使用則有良好效果,但礙於成本考量有執行上的困難。因此又改變熱處理條件,發現如前述所提到的回火麻田散體及細微雪明碳體中間夾雜再結晶肥粒體組織能有效成為捕捉氫原子的氫陷阱(hydrogen trap),縱使QT260-30及QT320-30兩組回火條件的機械性質都是屬於氫脆高危險群(HRC≧32, Tensile strength ≧1250MPa),常溫使用下氫脆現象在回火溫度260˚C持續30分鐘還是會發生但機率很低,而在回火溫度320˚C持續30分鐘則完全沒有破壞現象,推測試前述高溫回火中的組織能有效捕捉氫離子使之不會對螺絲造成脆性破壞;低溫環境下(-15˚C、30 ˚C)改變熱處理條件之螺絲能完全抵抗氫脆。
In this study, hydrogen was introduced into the screw through the process of electroplating, which made the HE fracture happened. To improve it, we used two methods including baking and increasing tempering temperature. 10B21 zinc-plating screw with quench tempering heat treatment(tempering condition: Austenitizing 950°C for 30minutes then water quenching, tempering 220°C for 60minutes then air cooling. ) was my as-received screws. In the first part, we baked screw at 215°C for 0, 8, 16hours and conducted hydrogen embrittlement test. In second part, we increasing tempering temperature including 260°C and 320°C for 30minutes then conducted hydrogen embrittlement test. The results of experiment of two methods improving the hydrogen embrittlement considerably. Baking efficiently drives out the hydrogen atoms and ions and increasing tempering time changes the microstructure of screws which increasing the hydrogen traps in the screws likes interphase of fine recrystallization ferrite (Sorbite) and lamellar cementite and the tempering carbide.
第六章 參考文獻
[1] 黃得晉,我國扣件高值化市場現況與發展趨勢,經濟部工業產品分類/金屬中心IT IS計畫整理,2005年。
[2] W. D. Callister Jr., “ Fundamentals of Materials Science and
Engineering ”, John Wiley & Sons, Section 11-7, pp. 339-343, 2001.
[3] 余煥騰,《金屬熱處理學》,六合出版社,167-192頁,1998年。
[4] 邱士瑋,《淬火及回火相關熱處理對1013低碳鋼 微觀組織特徵及機械性質之影響》,國立成功大學材料科學與工程學系,2013年。
[5] K. W. Andrews, Empirical Formula for the Calculation of Some Transformation Temperatures, Journal of the Iron and Steel Institute, 721-727, 1965.
[6] 林鴻榮、鄭國華,《中碳鋼加硼效應研究》,經濟部七十年度研究發展專題,1981年。
[7] R. A. Mulford et al., Temper Embrittlement of Ni-Cr Steels by Phosphorus, Metallurgical Transactions A, vol. 7A, pp. 1183-1195, 1976.
[8] M. Sarikaya et al., Retained Austenite and Tempered Martensite Embrittlement in Medium Carbon Steels, Metallurgical Transaction A, vol. 14A, pp. 1121-1133, 1983.
[9] 王翔宇等,《回火處理對10B30和15B30V氫脆行為之影響》,台灣大學材料科學與工程學系與中國鋼鐵公司。
[10] W. S. Yong et al., Effect of Hydrogen on Ductility of High Strength Quenched and Tempered (QT) Cr-Ni-Mo Steels, Materials Sciencce & Engineering A 625, pp.89-97, 2015.
[11] J. Woodtli and R. Kieselbach, Damage due to Hydrogen Embrittlement and Stress Corrosion Cracking, Engineering Failure Analysis 7, pp. 427-450, 2000.
[12] M. R. Louthan Jr., Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst, Fail. Anal. And Preven., 289-307, 2008.
[13] B. Lonyuk et al., A Study of Hydrogen Embrittlement in Automotive Fastener Steels, Netherlands Institute for Metals Research.
[14] J. K. Knott, Some New Aspects of Hydrogen-Assisted Crack Growth in Steels, Journal of Chinese Corrosion Engineering, vol. 9, No. 4, pp.215-224, 1995.
[15] L. Liu et al., Hydrogen Diffusion and Permeation in Metals, Journal of Chinese Corrosion Engineering, vol. 9, No. 4, pp. 245-259, 1995.
[16] R. B. Rebak et al., Hydrogen Diffusion and Accumulation in Automotive Fasteners, Corrosion, vol. 53, No. 6, pp. 481-488, 1997.
[17] Xia Yu and Shi Wen, Hydrogen-Induced delayed failure of TWIP steel with vanadium addition, Shanghai Metals, vol. 36, No. 2, pp. 18-22, 2014.
[18] 莊東漢,《材料破損分析》,五南出版社,426-436頁,2007年。
[19] 業贊定,《鋼鐵材料手冊》-鋼鐵材料破損原因分析,中國材料科學學會,603-654頁,1998年。
[20] H. F. Jackson et al., Effect of low Temperature on Hydrogen-assisted Crack Propagation in 304L/308L Austenitic Stainless Steel Fusion Welds, Corrosion Science 77, pp. 210-221, 2013.
校內:2020-08-24公開