簡易檢索 / 詳目顯示

研究生: 孔錦成
Aentung, Tanawat
論文名稱: 生物質和固體廢棄物共氣化製程的多目標最適化分析
Multi-Objective Optimization of Biomass/Solid Waste Co-Gasification processes
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 92
中文關鍵詞: 合成氣生產製程建模共氣化多目標最佳化
外文關鍵詞: Syngas production, Process modeling, Co-gasification, Multi-objective optimization
相關次數: 點閱:45下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • -

    The process of syngas production through solid waste and biomass co-gasification is a promising and environmentally friendly technology. This study focuses on the processes modeling, parametric and synergistic analysis, multi-objective optimization, and the identification of optimal operating conditions. Model validation compared simulation results with experimental data, demonstrating good agreement, especially for the kinetic model. The study investigates the effects of gasifier temperature, steam-to-feed ratio (S/F) and blending weight ratio (B/W) on tar yield, syngas composition and syngas yield. The results reveal that higher gasifier temperatures increase CO concentrations while decreasing CO2 and CH4 concentrations due to the promotion of endothermic reactions. Syngas yield (GY) notably increases with rising temperatures, whereas tar yield decreases. This is attributed to the higher temperatures enhancing the tar cracking process, converting it into lighter gases. Similarly, higher S/F ratios lead to elevated H2 and CO2 concentrations, enhancing GY and reducing tar yield. Furthermore, varying B/W ratios affect syngas composition, with increased B/W ratios decreasing H2 and CH4 concentrations but increasing CO2 concentrations. However, both GY and tar yield decrease with higher B/W ratios due to less carbon being available to form tar products and converting into syngas. Statistical analysis, including ANOVA and the response surface method (RSM) with Box-Behnken design (BBD), assesses the significance of parameters and optimizes operating conditions to maximize GY and minimize CO2 concentration. The B/W ratio is identified as the most influential factor on GY, while the S/F ratio significantly impacts CO2 concentration. The multi-objective optimization using a genetic algorithm (GA) and TOPSIS method determines the optimal conditions at T = 1099.95 °C, S/F ratio = 0.79, and B/W ratio = 10.02, achieving a GY of 2.672 Nm³/kg, a CO2 concentration of 8.045 vol.% and tar yield 17.0617 g/Nm³. Furthermore, the performance of a CO2 absorption process using CaO. The process has 47.3352 kg of CaO per hour, achieving a CO2 capture efficiency of 93.7967% and a CO2 purity of 99.9992%. This efficient process effectively captures and purifies CO2, suitable for applications requiring high-purity CO2.

    ABSTRACT I ACKNOWLEDGEMENT III TABLE OF CONTENT IV LIST OF TABLES VIII LIST OF FIGURES X LIST OF ABBREVIATIONS AND SYMBOLS XIV CHAPTER 1 1 1.1 BACKGROUND 1 1.2 OBJECTIVE 4 1.3 SCOPES OF WORK 4 1.4 EXPECTED OUTPUTS 5 CHAPTER 2 6 2.1 FEEDSTOCK 6 2.1.1 Biomass 6 2.1.2 Natural Gas 6 2.1.3 Solid waste 6 2.1.4 Coal 7 2.2 RICE STRAW 7 2.3 MUNICIPAL SOLID WASTE 7 2.4 BIOFUEL PRODUCTION 8 2.4.1 Physical technologies 8 2.4.2 Chemical technologies 8 2.4.3 Thermochemical technologies 9 2.4.3.1 Pyrolysis 9 2.4.3.2 Gasification 9 2.4.4 Biochemical technologies 9 2.5 GASIFICATION 10 2.5.1 Feedstock Preparation 10 2.5.2 Gasifier 10 2.5.3 Gas Cleanup 11 2.5.4 Syngas Conditioning 12 2.5.5 Syngas Utilization 12 2.6 TAR FORMATION 12 2.7 SYNGAS 12 2.8 MULTI-OBJECTIVE OPTIMIZATION 13 2.8.1 Experimental Design 13 2.8.2 Response Surface Methodology 13 2.8.3 Optimization Algorithms Integration 14 2.8.4 Trade-off Analysis 14 2.9 LITERATURE REVIEW 14 CHAPTER 3 16 3.1 MATERIALS AND METHOD 16 3.1.1 MATERIALS 16 3.1.2 METHOD 17 3.2 SIMULATION APPROACH 18 3.2.1 MODEL ASSUMPTIONS 18 3.2.2 Reaction zones in gasifier 20 3.3 PROCESS DESCRIPTION 20 3.3.1 Kinetic model 20 3.3.2 Equilibrium model 23 3.3.4 Reactor model 26 3.4 PROCESS OPTIMIZATION 28 3.4.1 Design mathematic model 28 3.4.2 Desirability 28 3.4.3 Genetic algorithm 29 3.4.4 TOPSIS method 30 CHAPTER 4 32 RESULTS AND DISCUSSION 32 4.1 MODEL VALIDATION 32 4.2 EFFECT OF OPERATING PARAMETERS 34 4.2.1 Effect of operating parameters on tar formation 34 4.2.2 Effect of gasifier temperature on gas products 35 4.2.3 Effect of steam to feed ratio on gas products 37 4.2.4 Effect of blending weight ratio on gas products 39 4.3 STATISTICAL ANALYSIS 41 4.3.1 ANOVA analysis 41 4.3.2 Synergistic analysis 45 4.4 MULTI-OBJECTIVE OPTIMIZATION 47 4.4.1 Desirability value of RSM technique 47 4.4.2 GA technique with TOPSIS method 48 4.4.3 Comparison the multi-objective optimization results 49 4.5 IMPROVEMENT OF SYNGAS QUALITY 50 CHAPTER 5 52 5.1 CONCLUSION 52 5.2 RECOMMENDATIONS 53 REFERENCES 54 APPENDIX 60 APPENDIX A SIMULATION RESULTS OF OPERATING PARAMETERS 61 APPENDIX B STATISTICAL RESULTS OF RESPONSE 65 APPENDIX C MUTI-OBJECTIVE OPTIMIZATION RESULTS 68 APPENDIX D PROCESS IMPROVEMENT OF SYNGAS QUALITY RESULTS 77

    (1) The British Petroleum Company p.l.c. Bp Energy Outlook 2023; 2023.
    (2) Renewable Energy Agency, I. Global Energy Transformation: A Roadmap to 2050; 2018.
    (3) Alao, M. A.; Popoola, O. M.; Ayodele, T. R. Waste‐to‐energy Nexus: An Overview of Technologies and Implementation for Sustainable Development. Cleaner Energy Systems. Elsevier B.V. December 1, 2022. https://doi.org/10.1016/j.cles.2022.100034.
    (4) Osman, A. I.; Mehta, N.; Elgarahy, A. M.; Al-Hinai, A.; Al-Muhtaseb, A. H.; Rooney, D. W. Conversion of Biomass to Biofuels and Life Cycle Assessment: A Review. Environmental Chemistry Letters. Springer Science and Business Media Deutschland GmbH December 1, 2021, pp 4075–4118. https://doi.org/10.1007/s10311-021-01273-0.
    (5) Mishra, R.; Singh, E.; Kumar, A.; Ghosh, A.; Lo, S. L.; Kumar, S. Co-Gasification of Solid Waste and Its Impact on Final Product Yields. Journal of Cleaner Production. Elsevier Ltd November 10, 2022. https://doi.org/10.1016/j.jclepro.2022.133989.
    (6) Lv, P.; Bai, Y.; Wang, J.; Song, X.; Su, W.; Yu, G.; Ma, Y. Investigation into the Interaction of Biomass Waste with Industrial Solid Waste during Co-Pyrolysis and the Synergetic Effect of Its Char Gasification. Biomass Bioenergy 2022, 159. https://doi.org/10.1016/j.biombioe.2022.106414.
    (7) Maalouf, A.; Mavropoulos, A. Re-Assessing Global Municipal Solid Waste Generation. Waste Management and Research 2023, 41 (4), 936–947. https://doi.org/10.1177/0734242X221074116.
    (8) Silpa Kaza, L. Y. P. B.-T. and F. V. W. What a Waste 2.0 A Global Snapshot of Solid Waste Management to 2050, 2018.
    (9) He, M.; Xiao, B.; Liu, S.; Hu, Z.; Guo, X.; Luo, S.; Yang, F. Syngas Production from Pyrolysis of Municipal Solid Waste (MSW) with Dolomite as Downstream Catalysts. J Anal Appl Pyrolysis 2010, 87 (2), 181–187. https://doi.org/10.1016/j.jaap.2009.11.005.
    (10) Holmatov, B.; Schyns, J. F.; Krol, M. S.; Gerbens-Leenes, P. W.; Hoekstra, A. Y. Can Crop Residues Provide Fuel for Future Transport? Limited Global Residue Bioethanol Potentials and Large Associated Land, Water and Carbon Footprints. Renewable and Sustainable Energy Reviews 2021, 149. https://doi.org/10.1016/j.rser.2021.111417.
    (11) Juan Luis Salazar. OECD-FAO Agricultural Outlook 2023-2032; OECD-FAO Agricultural Outlook; OECD, 2023. https://doi.org/10.1787/08801ab7-en.
    (12) Singh, M.; Salaudeen, S. A.; Gilroyed, B. H.; Dutta, A. Simulation of Biomass-Plastic Co-Gasification in a Fluidized Bed Reactor Using Aspen Plus. Fuel 2022, 319. https://doi.org/10.1016/j.fuel.2022.123708.
    (13) Salem, A. M.; Zaini, I. N.; Paul, M. C.; Yang, W. The Evolution and Formation of Tar Species in a Downdraft Gasifier: Numerical Modelling and Experimental Validation. Biomass Bioenergy 2019, 130. https://doi.org/10.1016/j.biombioe.2019.105377.
    (14) Tursun, Y.; Xu, S.; Wang, G.; Wang, C.; Xiao, Y. Tar Formation during Co-Gasification of Biomass and Coal under Different Gasification Condition. J Anal Appl Pyrolysis 2015, 111, 191–199. https://doi.org/10.1016/j.jaap.2014.11.012.
    (15) Mallick, D.; Mahanta, P.; Moholkar, V. S. Co–Gasification of Coal/Biomass Blends in 50 KWe Circulating Fluidized Bed Gasifier. Journal of the Energy Institute 2020, 93 (1), 99–111. https://doi.org/10.1016/j.joei.2019.04.005.
    (16) Liu, G.; Pu, L.; Zhao, H.; Chen, Z.; Li, G. Multi-Objective Optimization of CO2 Ejector by Combined Significant Variables Recognition, ANN Surrogate Model and Multi-Objective Genetic Algorithm. Energy 2024, 295. https://doi.org/10.1016/j.energy.2024.131010.
    (17) Inayat, M.; Sulaiman, S. A.; Inayat, A.; Shaik, N. B.; Gilal, A. R.; Shahbaz, M. Modeling and Parametric Optimization of Air Catalytic Co-Gasification of Wood-Oil Palm Fronds Blend for Clean Syngas (H2+CO) Production. Int J Hydrogen Energy 2021, 46 (59), 30559–30580. https://doi.org/10.1016/j.ijhydene.2020.10.268.
    (18) Roy, S.; Kr Saha, A.; Panda, S.; Dey, G. Optimization of Turmeric Oil Extraction in an Annular Supercritical Fluid Extractor by Comparing BBD-RSM and FCCD-RSM Approaches. In Materials Today: Proceedings; Elsevier Ltd, 2022; Vol. 76, pp 47–55. https://doi.org/10.1016/j.matpr.2022.09.039.
    (19) Veljković, V. B.; Veličković, A. V.; Avramović, J. M.; Stamenković, O. S. Modeling of Biodiesel Production: Performance Comparison of Box–Behnken, Face Central Composite and Full Factorial Design. Chin J Chem Eng 2019, 27 (7), 1690–1698. https://doi.org/10.1016/j.cjche.2018.08.002.
    (20) Frazão, C. J. R.; Walther, T. Syngas and Methanol-Based Biorefinery Concepts. Chemie-Ingenieur-Technik. Wiley-VCH Verlag November 1, 2020, pp 1680–1699. https://doi.org/10.1002/cite.202000108.
    (21) Saleem, M. Possibility of Utilizing Agriculture Biomass as a Renewable and Sustainable Future Energy Source. Heliyon. Elsevier Ltd February 1, 2022. https://doi.org/10.1016/j.heliyon.2022.e08905.
    (22) Hantoko, D.; Li, X.; Pariatamby, A.; Yoshikawa, K.; Horttanainen, M.; Yan, M. Challenges and Practices on Waste Management and Disposal during COVID-19 Pandemic. J Environ Manage 2021, 286. https://doi.org/10.1016/j.jenvman.2021.112140.
    (23) Shaheen, S. M.; Antoniadis, V.; Shahid, M.; Yang, Y.; Abdelrahman, H.; Zhang, T.; Hassan, N. E. E.; Bibi, I.; Niazi, N. K.; Younis, S. A.; Almazroui, M.; Tsang, Y. F.; Sarmah, A. K.; Kim, K. H.; Rinklebe, J. Sustainable Applications of Rice Feedstock in Agro-Environmental and Construction Sectors: A Global Perspective. Renewable and Sustainable Energy Reviews 2022, 153. https://doi.org/10.1016/j.rser.2021.111791.
    (24) Tokmurzin, D.; Kuspangaliyeva, B.; Aimbetov, B.; Abylkhani, B.; Inglezakis, V.; Anthony, E. J.; Sarbassov, Y. Characterization of Solid Char Produced from Pyrolysis of the Organic Fraction of Municipal Solid Waste, High Volatile Coal and Their Blends. Energy 2020, 191. https://doi.org/10.1016/j.energy.2019.116562.
    (25) Sikarwar, V. S.; Zhao, M.; Fennell, P. S.; Shah, N.; Anthony, E. J. Progress in Biofuel Production from Gasification. Progress in Energy and Combustion Science. Elsevier Ltd 2017, pp 189–248. https://doi.org/10.1016/j.pecs.2017.04.001.
    (26) Chakraborty, S.; Aggarwal, V.; Mukherjee, D.; Andras, K. Biomass to Biofuel: A Review on Production Technology. Asia-Pacific Journal of Chemical Engineering. August 2012. https://doi.org/10.1002/apj.1642.
    (27) Liew, W. H.; Hassim, M. H.; Ng, D. K. S. Review of Evolution, Technology and Sustainability Assessments of Biofuel Production. In Journal of Cleaner Production; Elsevier Ltd, 2014; Vol. 71, pp 11–29. https://doi.org/10.1016/j.jclepro.2014.01.006.
    (28) Bermudez, J. M.; Fidalgo, B. Production of Bio-Syngas and Bio-Hydrogen via Gasification. In Handbook of Biofuels Production: Processes and Technologies: Second Edition; Elsevier Inc., 2016; pp 431–494. https://doi.org/10.1016/B978-0-08-100455-5.00015-1.
    (29) Yu, J.; Smith, J. D. Validation and Application of a Kinetic Model for Biomass Gasification Simulation and Optimization in Updraft Gasifiers. Chemical Engineering and Processing - Process Intensification 2018, 125, 214–226. https://doi.org/10.1016/j.cep.2018.02.003.
    (30) Situmorang, Y. A.; Zhao, Z.; Yoshida, A.; Abudula, A.; Guan, G. Small-Scale Biomass Gasification Systems for Power Generation (<200 kW Class): A Review. Renewable and Sustainable Energy Reviews. Elsevier Ltd January 1, 2020. https://doi.org/10.1016/j.rser.2019.109486.
    (31) Yang, H.; Chen, H. Biomass Gasification for Synthetic Liquid Fuel Production. In Gasification for Synthetic Fuel Production: Fundamentals, Processes and Applications; Elsevier Ltd, 2015; pp 241–275. https://doi.org/10.1016/B978-0-85709-802-3.00011-4.
    (32) Cortazar, M.; Santamaria, L.; Lopez, G.; Alvarez, J.; Zhang, L.; Wang, R.; Bi, X.; Olazar, M. A Comprehensive Review of Primary Strategies for Tar Removal in Biomass Gasification. Energy Conversion and Management. Elsevier Ltd January 15, 2023. https://doi.org/10.1016/j.enconman.2022.116496.
    (33) Montgomery, D. C. Design and Analysis of Experiments Ninth Edition; 2017.
    (34) Rand R. Wilcox. APPLYING; 2003.
    (35) Cai, J.; Zeng, R.; Zheng, W.; Wang, S.; Han, J.; Li, K.; Luo, M.; Tang, X. Synergistic Effects of Co-Gasification of Municipal Solid Waste and Biomass in Fixed-Bed Gasifier. Process Safety and Environmental Protection 2021, 148, 1–12. https://doi.org/10.1016/j.psep.2020.09.063.
    (36) Umar, H. A.; Sulaiman, S. A. Parametric Optimisation through the Use of Box-Behnken Design in the Co-Gasification of Oil Palm Trunk and Frond for Syngas Production. Fuel 2022, 310. https://doi.org/10.1016/j.fuel.2021.122234.
    (37) Hasanzadeh, R.; Mojaver, P.; Azdast, T.; Khalilarya, S.; Chitsaz, A. Developing Gasification Process of Polyethylene Waste by Utilization of Response Surface Methodology as a Machine Learning Technique and Multi-Objective Optimizer Approach. Int J Hydrogen Energy 2023, 48 (15), 5873–5886. https://doi.org/10.1016/j.ijhydene.2022.11.067.
    (38) Yatsunthea, T.; Chaiyat, N. A Very Small Power Plant – Municipal Waste of the Organic Rankine Cycle and Incinerator from Medical and Municipal Wastes. Thermal Science and Engineering Progress 2020, 18. https://doi.org/10.1016/j.tsep.2020.100555.
    (39) Singh, R. K.; Patil, T.; Verma, A.; Tekade, S. P.; Sawarkar, A. N. Insights into Kinetics, Reaction Mechanism, and Thermodynamic Analysis of Pyrolysis of Rice Straw from Rice Bowl of India. Bioresour Technol Rep 2021, 13. https://doi.org/10.1016/j.biteb.2021.100639.
    (40) Porcu, A.; Xu, Y.; Mureddu, M.; Dessì, F.; Shahnam, M.; Rogers, W. A.; Sastri, B. S.; Pettinau, A. Experimental Validation of a Multiphase Flow Model of a Lab-Scale Fluidized-Bed Gasification Unit. Appl Energy 2021, 293. https://doi.org/10.1016/j.apenergy.2021.116933.
    (41) Dong, J.; Nzihou, A.; Chi, Y.; Weiss-Hortala, E.; Ni, M.; Lyczko, N.; Tang, Y.; Ducousso, M. Hydrogen-Rich Gas Production from Steam Gasification of Bio-Char in the Presence of CaO. Waste Biomass Valorization 2017, 8 (8), 2735–2746. https://doi.org/10.1007/s12649-016-9784-x.
    (42) Salem, A. M.; Zaini, I. N.; Paul, M. C.; Yang, W. The Evolution and Formation of Tar Species in a Downdraft Gasifier: Numerical Modelling and Experimental Validation. Biomass Bioenergy 2019, 130. https://doi.org/10.1016/j.biombioe.2019.105377.
    (43) Petersen, I.; Werther, J. Experimental Investigation and Modeling of Gasification of Sewage Sludge in the Circulating Fluidized Bed. Chemical Engineering and Processing: Process Intensification 2005, 44 (7), 717–736. https://doi.org/10.1016/j.cep.2004.09.001.
    (44) Miao, Q.; Zhu, J.; Barghi, S.; Wu, C.; Yin, X.; Zhou, Z. Modeling Biomass Gasification in Circulating Fluidized Beds. Renew Energy 2013, 50, 655–661. https://doi.org/10.1016/j.renene.2012.08.020.
    (45) Sun, H.; Wu, C.; Shen, B.; Zhang, X.; Zhang, Y.; Huang, J. Progress in the Development and Application of CaO-Based Adsorbents for CO2 Capture—a Review. Materials Today Sustainability. Elsevier Ltd December 1, 2018, pp 1–27. https://doi.org/10.1016/j.mtsust.2018.08.001.
    (46) Huang, C. H.; Chang, K. P.; Yu, C. T.; Chiang, P. C.; Wang, C. F. Development of High-Temperature CO 2 Sorbents Made of CaO-Based Mesoporous Silica. Chemical Engineering Journal 2010, 161 (1–2), 129–135. https://doi.org/10.1016/j.cej.2010.04.045.
    (47) Ajorloo, M.; Ghodrat, M.; Scott, J.; Strezov, V. Modelling and Statistical Analysis of Plastic Biomass Mixture Co-Gasification. Energy 2022, 256. https://doi.org/10.1016/j.energy.2022.124638.
    (48) Méndez, M.; Frutos, M.; Miguel, F.; Aguasca-Colomo, R. Topsis Decision on Approximate Pareto Fronts by Using Evolutionary Algorithms: Application to an Engineering Design Problem. Mathematics 2020, 8 (11), 1–27. https://doi.org/10.3390/math8112072.
    (49) Jeong, Y. S.; Choi, Y. K.; Park, K. B.; Kim, J. S. Air Co-Gasification of Coal and Dried Sewage Sludge in a Two-Stage Gasifier: Effect of Blending Ratio on the Producer Gas Composition and Tar Removal. Energy 2019, 185, 708–716. https://doi.org/10.1016/j.energy.2019.07.093.
    (50) Sui, M.; Li, G. ying; Guan, Y. lin; Li, C. ming; Zhou, R. qing; Zarnegar, A. M. Hydrogen and Syngas Production from Steam Gasification of Biomass Using Cement as Catalyst. Biomass Convers Biorefin 2020, 10 (1), 119–124. https://doi.org/10.1007/s13399-019-00404-6.
    (51) Gao, Y.; Wang, M.; Raheem, A.; Wang, F.; Wei, J.; Xu, D.; Song, X.; Bao, W.; Huang, A.; Zhang, S.; Zhang, H. Syngas Production from Biomass Gasification: Influences of Feedstock Properties, Reactor Type, and Reaction Parameters. ACS Omega. American Chemical Society September 5, 2023, pp 31620–31631. https://doi.org/10.1021/acsomega.3c03050.
    (52) Pio, D. T.; Gomes, H. G. M. F.; Tarelho, L. A. C.; Vilas-Boas, A. C. M.; Matos, M. A. A.; Lemos, F. M. S. Superheated Steam Injection as Primary Measure to Improve Producer Gas Quality from Biomass Air Gasification in an Autothermal Pilot-Scale Gasifier. Renew Energy 2022, 181, 1223–1236. https://doi.org/10.1016/j.renene.2021.09.083.
    (53) Erdem, K.; Gündüz Han, D.; Midilli, A. A Parametric Study on Hydrogen Production by Fluidized Bed Co-Gasification of Biomass and Waste Plastics. Int J Hydrogen Energy 2023. https://doi.org/10.1016/j.ijhydene.2023.10.115.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE