簡易檢索 / 詳目顯示

研究生: 蕭彤宣
Hsiao, Tung-Hsuan
論文名稱: 銀添加對鋰離子二次電池鎂合金負極材料充放電特性與界面分析之研究
Effect of Adding Ag on Charge-Discharge Characteristics and Interface Analysis of Mg Alloy Anode Materials for Lithium-Ion Rechargeable Batteries
指導教授: 洪飛義
Hung, Fei-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 83
中文關鍵詞: ZA137銀奈米粒子鋰離子電池充放電
外文關鍵詞: ZA137, Ag nano-particle, Li-ion batteries, charge-discharge
相關次數: 點閱:75下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子二次電池因能量密度高、工作電壓高、成本低等優點成為現今二次電池之主流。而商用之石墨負極因理論電容量較低,取代石墨之負極材料為目前研究重點之一。
    鎂具有較石墨高電容量之優勢,但因鎂活性高、安全性不佳,且在數次循環充放電後會因體積膨脹導致電池壽命不佳等問題。基於此,本實驗使用活性較低Mg-Zn-Al(ZA)合金材料作為鋰離子電池之負極材料,藉助Mg基地作為活性材料,利用第二相Mg32(Al.Zn)49來抑制體積變化,並導入奈米Ag粒子到粉末系統中,進而探討極片之顯微組織與充放電特性。
    實驗結果顯示,ZA負極材料在不同工作溫度與不同電流密度下具有顯著差異之充放電性質,在高溫(55℃)、電流80mA/cm2條件下具有最高充放電容量與最佳庫侖效率。添加不同比例Ag粒子於ZA負極材料中之充放電結果顯示,隨著Ag添加量增加,可達到快速降低不可逆電容量之正面效益。
    此外,實驗藉蒸鍍方式製備Ag/ZA極片,並檢討熱處理製程對極片界面擴散與氧化行為之影響,可確認蒸鍍銀膜經熱處理後之試片,電阻率下降,並具良好擴散界面與抗氧化之特性。因此,Ag粒子塗佈在粉末混合過程中,可具有Ag/ZA機械合金界面層,進而提升充放電特性。

    Lithium-ion batteries have been widely applied in various electronic devices due to their higher energy density, higher working voltage and relatively lower cost than other secondary systems. However, the current choice of graphite anode for lithium-ion batteries has the disadvantages of low energy density. Thus, there has been a growing interest in developing alternative anode materials.
    The theoretical specific capacity of magnesium is much higher than that of graphite, but magnesium has several disadvantages, such as high activity, low safety and severe volumetric expansion during lithiation/delithiation processes, which greatly limits the cycle life of the electrodes. In this study, Mg-Zn-Al(ZA) alloy was performed as the anode materials of lithium-ion batteries, Mg-based structure was used as the active materials, and utilizing the second phase Mg32(Al.Zn)49 to inhibit the volumetric changes. Meanwhile, adding nano- scale Ag particles into the powder systems, and then their microstructures and charge-discharge characteristics were investigated.
    The results indicated that the ZA anode materials had the significant differences in working temperature and current density. It had the highest discharge capacity and the best coulomb efficiency at 55℃ and 80mA/cm2. Furthermore, the effects on adding Ag particles with different ratio into ZA anode materials showed that it was able to rapidly reduce the irreversible capacity and enhance cycle performance.
    In addition, Ag/ZA electrodes were performed by thermal evaporation, and the results of interface diffusion and oxidation behavior by heat treatment were discussed. It was confirmed that after heat treatment, Ag/ZA electrodes formed good diffusion behavior and anti-oxidation property. Therefore, Ag/ZA had mechanical alloy interface layer by coating Ag particles, and then enhanced the charge-discharge characteristics.

    總目錄 中文摘要 II Abstract III 誌謝 IV 總目錄 VI 表目錄 X 圖目錄 XI 第一章 前言 1 1-1 研究背景 1 1-2 研究動機與方法 1 第二章 基礎理論與文獻回顧 3 2-1 鋰離子二次電池與其工作原理 3 2-2 鋰離子電池特性與優點 4 2-3 鋰離子電池負極材料 5 2-4 Mg基電極材料 6 2-4-1 Mg-Zn-Al電極材料 6 2-4-2 Mg-Zn-Al-Ag電極材料 6 2-5 鎂合金之命名法則 7 第三章 實驗步驟與方法 11 3-1 實驗流程概述 11 3-2 粉末電極負極材料與蒸鍍薄膜材料製備 11 3-3 負極材料顯微組織分析 12 3-3-1 低掠角X-ray繞射分析 12 3-3-2 掃描式電子顯微鏡與EDS、Mapping分析 12 3-3-3 雙束型聚焦離子束分析 13 3-3-4 穿透式電子顯微鏡分析 13 3-3-5 化學分析電子光譜儀鑑定 14 3-4 電池組裝與測試 14 3-4-1 極片製作 14 3-4-2 電池組裝 15 3-4-3 充放電測試 16 3-4-4 電化學試驗 16 3-4-5 離子溶出分析 18 3-5 薄膜光電性質分析 18 3-5-1 電阻率量測 18 第四章 結果與討論 27 4-1 ZA粉末電極特性 27 4-1-1 ZA粉末顯微結構與元素成份分析 27 4-1-2 ZA粉末電極常溫(25℃)充放電循環特性 27 4-1-3 ZA粉末電極高溫(55℃)充放電循環特性 29 4-1-4 常溫與高溫下ZA粉末電極充放電循環特性比較 30 4-1-5 高溫(55℃)與高電流(80mA/cm2)下ZA粉末電極充放電循環特性 31 4-2 添加不同比例Ag之ZA粉末電極特性 33 4-2-1 ZA+Ag粉末顯微結構分析 33 4-2-2 ZA+Ag(5wt.%)粉末電極充放電循環特性 33 4-2-3 ZA+Ag(50wt.%)粉末電極充放電循環特性 34 4-2-4 添加不同比例Ag之ZA電極充放電循環特性比較 34 4-3 ZA、Ag/ZA與Ag/ZA-HT蒸鍍薄膜特性 36 4-3-1 熱蒸鍍薄膜顯微組織與電性分析 36 4-3-2 薄膜低掠角X-ray繞射分析 36 4-3-3 Ag/ZA界面組織特徵分析 37 4-3-4 腐蝕電化學分析 37 第五章 結論 77 第六章 參考文獻 79 自述 83

    [1] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van Schalkwijk, "Nanostructured materials for advanced energy conversion and storage devices", Nature Materials, vol. 4, pp. 366-377, May 2005.
    [2] B. Scrosati and J. Garche, "Lithium batteries: Status, prospects and future", Journal of Power Sources, vol. 195, pp. 2419-2430, May 1 2010.
    [3] A. Askariani, M. N. Pishbin, and R. Mahmudi, "Tearing energy of AZ31 magnesium alloy sheets determined by the multiple tensile testing method", Materials & Design, vol. 31, pp. 3618-3623, Sep 2010.
    [4] A. K. Shukla and T. P. Kumar, "Materials for next-generation lithium batteries", Current Science, vol. 94, pp. 314-331, Feb 10 2008.
    [5] Y. Y. Xia, T. Sakai, T. Fujieda, M. Wada, and H. Yoshinaga, "Flake Cu-Sn alloys as negative electrode materials for rechargeable lithium batteries", Journal of the Electrochemical Society, vol. 148, pp. A471-A481, May 2001.
    [6] W. J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries", Journal of Power Sources, vol. 196, pp. 13-24, Jan 1 2011.
    [7] J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, "A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte", Journal of Power Sources, vol. 74, pp. 219-227, Aug 1 1998.
    [8] S. Megahed and B. Scrosati, "Lithium-Ion Rechargeable Batteries", Journal of Power Sources, vol. 51, pp. 79-104, Aug-Sep 1994.
    [9] B. Scrosati, "Lithium Rocking Chair Batteries", Journal of the Electrochemical Society, vol. 139, pp. 2776-2781, Oct 1992.
    [10] K. Hirai, T. Ichitsubo, T. Uda, A. Miyazaki, S. Yagi, and E. Matsubara, "Effects of volume strain due to Li-Sn compound formation on electrode potential in lithium-ion batteries", Acta Materialia, vol. 56, pp. 1539-1545, Apr 2008.
    [11] P. Cui, Z. Jia, L. Li, and T. He, "Preparation and characteristics of Sb-doped LiNiO2 cathode materials for Li-ion batteries", Journal of Physics and Chemistry of Solids, vol. 72, pp. 899-903, Jul 2011.
    [12] T. Takamura, S. Ohara, M. Uehara, J. Suzuki, and K. Sekine, "A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life", Journal of Power Sources, vol. 129, pp. 96-100, Apr 15 2004.
    [13] P. Elumalai, H. N. Vasan, and N. Munichandraiah, "Microwave synthesis and electrochemical properties of LiCo1-xMxO2 (M = Al and Mg) cathodes for Li-ion rechargeable batteries", Journal of Power Sources, vol. 125, pp. 77-84, Jan 2 2004.
    [14] C. M. Park, S. Yoon, S. I. Lee, and H. J. Sohn, "Enhanced electrochemical properties of nanostructured bismuth-based composites for rechargeable lithium batteries", Journal of Power Sources, vol. 186, pp. 206-210, Jan 1 2009.
    [15] D. Aurbach, Y. Gofer, Z. Lu, A. Schechter, O. Chusid, H. Gizbar, et al., "A short review on the comparison between Li battery systems and rechargeable magnesium battery technology", Journal of Power Sources, vol. 97-8, pp. 28-32, Jul 2001.
    [16] D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, et al., "Prototype systems for rechargeable magnesium batteries", Nature, vol. 407, pp. 724-727, Oct 12 2000.
    [17] 蕭人瑄, "鋰離子二次電池鎂-鎳-碳負極材料微觀組織與充放電特性研究",國立成功大學 奈米科技暨微系統工程研究所碩士論文,2011。
    [18] F. Y. Hung, T. S. Lui, R. S. Xiao, Y. W. Tseng, and C. H. Wang, "Structural Effects and Charge-Discharge Characteristics of Mg-C/Mg-Li Alloy Thin Film Materials", Materials Transactions, vol. 52, pp. 1127-1131, Jun 2011.
    [19] P. Novak, R. Imhof, and O. Haas, "Magnesium insertion electrodes for rechargeable nonaqueous batteries - a competitive alternative to lithium", Electrochimica Acta, vol. 45, pp. 351-367, 1999.
    [20] O. Mao, R. L. Turner, I. A. Courtney, B. D. Fredericksen, M. I. Buckett, L. J. Krause, et al., "Active/inactive nanocomposites as anodes for Li-ion batteries", Electrochemical and Solid State Letters, vol. 2, pp. 3-5, Jan 1999.
    [21] H. R. Jung and W. J. Lee, "Ag/poly(3,4-ethylenedioxythiophene) nanocomposites as anode materials for lithium ion battery", Solid State Ionics, vol. 187, pp. 50-57, Apr 8 2011.
    [22] Z. Liu, S. W. Tay, L. Hong, and J. Y. Lee, "Physical and electrochemical characterizations of LiFePO4-incorporated Ag nanoparticles", Journal of Solid State Electrochemistry, vol. 15, pp. 205-209, Jan 2011.
    [23] Y. N. NuLi, Y. Q. Chu, and Q. Z. Qin, "Nanocrystalline ZnFe2O4 and Ag-doped ZnFe2O4 films used as new anode materials for Li-ion batteries", Journal of the Electrochemical Society, vol. 151, pp. A1077-A1083, 2004.
    [24] H. M. Abuzeid, A. M. Hashem, N. Narayanan, H. Ehrenberg, and C. M. Julien, "Nanosized silver-coated and doped manganese dioxide for rechargeable lithium batteries", Solid State Ionics, vol. 182, pp. 108-115, Feb 3 2011.
    [25] 楊智超,"鎂合金材料特性及新製程發展",工業材料, 1999。
    [26] S. S. Zhang, K. Xu, and T. R. Jow, "EIS study on the formation of solid electrolyte", Electrochimica Acta, vol. 51, pp. 1636-1640, Jan 20 2006.
    [27] M. M. Rahman, S. L. Chou, C. Zhong, J. Z. Wang, D. Wexler, and H. K. Liu, "Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention", Solid State Ionics, vol. 180, pp. 1646-1651, Jan 29 2010.
    [28] L. Z. Ouyang, H. Wang, C. H. Peng, M. Q. Zeng, C. Y. Chung, and M. Zhu, "Formation of MgCNi3 and Mg-Ni amorphous mixture by mechanical alloying of Mg-Ni-C system", Materials Letters, vol. 58, pp. 2203-2206, Jun 2004.
    [29] C. H. Wang, F. Y. Hung, T. S. Lui, and L. H. Chen, "The Charge-Discharge Characteristics of Woody Carbon Modified with Fe3O4 Nano Phase Using the Hydrothermal Method", Materials Transactions, vol. 51, pp. 186-191, Jan 2010.
    [30] 熊楚強,電化學,文京圖書有限公司,1996。
    [31] M. Avesesian and H. Maker, Magnesium and magnesium alloys, ASM Specialty Handbook, 1999.

    下載圖示 校內:2014-09-24公開
    校外:2014-09-24公開
    QR CODE