簡易檢索 / 詳目顯示

研究生: 沈姿吟
Shen, Tzu-Yin
論文名稱: 覆晶底膠充填流動特性之研究
Flow Analysis of Underfill Dispensing in Flip Chips
指導教授: 周榮華
Chou, Jung-Hua
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 58
中文關鍵詞: 毛細作用表面張力底膠充填
外文關鍵詞: capillary, surface tension, underfill
相關次數: 點閱:70下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了避免熱應力所造成之疲勞破壞,覆晶元件在製程中,會在晶片與基板之間填入底膠,本文主要以實驗方法及數值模擬來探討流體以表面張力充填底膠之現象。
    實驗方法分別利用平行平板及毛細管,探討流體充填體積與時間之關係。實驗結果顯示,垂直平行板間之流體上升之初始速度近似定值,隨著時間的增加,速度急速的由快轉慢,到最後因表面張力與重力平衡而變成零。相對的,則水平放置的不同管徑之毛細管,因不受重力影響,實驗結果顯示,流體一開始以爆衝方式流入,達到極值後,流速便隨著時間而下降,最後漸漸平緩,流速以近似定值前進。
    若觀察充填時間,由毛細管實驗得到流體前端位置平方與時間成正比,其斜率主要與流體性質有關。若以長度50cm之毛細管為例,發現管徑愈小,充填時間則愈長,兩者成反比關係,主要是流體前端之毛細壓力所造成之結果;管徑愈小,毛細壓力相對就愈大,因此使流體前進之壓力梯度也愈小。
    以有限差分法模擬之結果與經驗公式之流體前端位置來比較,兩者差異值會隨著時間增大而漸漸縮小,以間距0.05公分來看充填長度50cm,最大差值為0.27cm,最小值為0.01cm。
    此外,以7.5 × 5.8 cm2,間距為60μm之晶片模擬實際充填情形,以點膠式對不同位置做底膠充填。實驗發現,邊緣部分對充填時間有重要的影響,然而流體前端不規則,容易發生氣孔包覆於流體中。

    To improve the reliability due to CTE mismatch of flip chip electronic components, the underfill encapsulant is usually filled into the gap between the chip and the substrate. The underfill driven by the capillary force is the emphatic topic in this study. In order to know the dispensing process due to capillary effect, this study combines experiments with numerical investigations to explore this phenomenon.
    Two vertical parallel plates and horizontal capillaries are used to experimentally find the relation between the dispensing volume and time. In the vertical parallel plates, experimental results indicate that the initial speed is almost constant and then drops off rapidly as time proceeds further. The fluid keeps on climbing up until equilibrium between surface tension and gravity is reached. In contrast, in the horizontal capillaries, where no gravity effect exists, surface tension effects were investigated by changing the diameter of the capillary. The results show a burst-like fluid filling behavior initially. Then, upon reaching a speed limit, the speed of flow front starts to drop off to a constant velocity as time proceeds further. Overall speaking, the square of flow front is proportional to the underfill time. On the other hand, the dispensing time increases as the diameter decreases.
    Comparing the results of finite difference method to those of empirical formula, the deviation of flow front decreases as time increases. Taking the case of the gap of 0.05cm as an example, the maximum deviation is 0.27cm, and the minimum deviation is 0.01cm.
    For the case with a die of 7.5 × 5.8 cm2, and a bump height of 60μm, filling time depends on the dispensing location. Experimental results indicate that the die edge has an important effect. However, an irregular shape of the flow front can occur and can lead voids inside the fluid if the dispensing speed is too fast.

    目錄I 表目錄III 圖目錄IV 符號說明VII 一、緒論 1 1-1 覆晶底膠充填之簡介 1 1-2 文獻回顧 2 1-3 研究動機與方法 7 1-4 論文架構 9 二、實驗設備 10 2-1 平行板實驗方法10 2-2 毛細管實驗方法10 2-3 晶片實驗 11 2-4 實驗誤差 11 三、模擬分析 12 3-1 無因次化分析 12 3-2 流體性質設定 14 3-3 邊界條件設定 14 四、結果與討論 15 4-1 平行平板實驗 15 4-2 毛細管實驗 17 4-3 模擬分析 19 4-3-1 模擬邊界條件19 4-3-2 模擬結果 21 4-4 晶片充填實驗 22 五、結論 23 參考文獻 25 附錄 28

    [1] Levine, L., Brunner J., and Haggenmuller, S., Morphology of Ball Bonds at Ultra-fine Pitch Below 50μm in Production Control, EPP Europe Jan/Feb 2003, pp.50-52
    [2] Tummala, R. R., Fundamental of Microsystems Packaging, McGraw-Hill, 2001
    [3] Carson, G. and Edwards, M., Factors Affecting Voiding, Loctite Technical Paper, Feb 2002
    [4] Babiarz, A. J., Quinones, H. and Ciardella, R., Faster Underfill Processes for Large to Small Flip Chips, Pan Pacific, Kauai, HI, 2001
    [5] http://www.musashi-engineering.co.jp/
    [6] Schwiebert, M. K. and Leong, W. H., Underfill Flow as Viscous Flow Between Parallel Plates Driven by Capillary Action, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part C, Vol. 19, No. 2, 1996, pp.133-137
    [7] Guo, Y., Lehmann, G.L., Driscoll, T., and Cotts, E.J., A Model of the Underfill Flow Process: Particle Distribution Effects, Electronic Components and Technology Conference 1999, Proceedings. 49th, 1999, pp.71-76
    [8] Han, S. and Wang K. K., Analysis of the Flow of Encapsulant During Underfill Encapsulation of Flip-Chips, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part B, Vol. 20, No. 4, 1997, pp.424-433
    [9] Washburn, F. W., The Dynamic of Capillary Flow, Physical Review, Vol. 17, 1921, pp273-283
    [10] Nguyen, L., Quentin, C., Fine, P., Cobb, B., Bayyuk, S., Yang, H., and Bidstrup-Allen, S. A., Underfill of Flip Chip on Laminates: Simulation and Validation, IEEE Transactions on Components and Packaging Technology, Vol. 22, No. 2, 1999, pp.168-176
    [11] Lehmann, G. L., Driscoll, T., Guydosh, N. R., Li, P. C., and Cotts, E. J., Underfill Process for Direct-Chip-Attachment Packaging, IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 21, No. 2, 1998, pp.266-274
    [12]http://www.tx.ncsu.edu/ncrc/Presentations/In-Plane%20Moisture%20Transport%20in%20Nonwovens.pdfatio
    [13] Jiang, T. S., Oh, S. G., and Slattery, J.C., Correlation for Dynamic Contact Angle, J. Colloid Interface Sci, Vol. 69, No.1, 1979, pp.346-353
    [14] Newman, S., Kinetics of Wetting of Surfaces by Polymers; Capillary Flow, Journal of Colloid and Interface Science, Vol.26, 1968, pp.209-213
    [15] Lee, Y., Kim, J.k., Chung, S., Chang, J. K., and Yoo, J. Y., Flow Characteristics of Hydrophilic/Hydrophobic Capillaries Considering Surface Tension, 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology, 2002, pp.560-564
    [16] Zhmud, B. V., Tiberg, F., and Hallstensson, K., Dynamics of Capillary Rise, Journal of Colloid and Interface Science, Vol. 228, 2000, pp.263-269,
    [17] Samuel, L., Lowndes, J., Watson, E. J., and Neale, G., A Theory of Capillary Rise of a Liquid in a Vertical Cylindrical Tube and in a Parallel-plate Channel, Journal of Colloid and Interface Science, Vol. 73, No. 1, 1980, pp.136-151
    [18] Yang, H., Bayyuk, S., Kishan, A., and Przekwas, A., Computational Simulation of Underfill Encapsulation of Flip-Chip Ics, Part I: Flow Modeling and Surface-Tension Effects, Electronic Components and Technology Conference, 1998, pp.1311-1317
    [19] Young, W. B. and Yang, W. L., Underfill Viscous Flow Between Parallel Plates and Solder Bumps, IEEE Transactions on Components and Packaging Technology, Vol. 25, No. 4, 2002, pp.695-700
    [20] Young, W. B. and Yang, W. L., The Effect of Solder Bump Pitch on the Underfill Flow, IEEE Transactions on Advanced Packaging, Vol. 25, No. 4, 2002, pp.537-542
    [21] Iwamoto, N., and Mustoe, G. G. W., Simulating Underfill Flow Microelectronics Packaging, Electronic Components and Technology Conference, 1999, pp.294-301
    [22] Quinones, H., Babiarz, A., and Fang, L., Encapsulation Technology for 3D Stacked Packages, ICEP/Microelectronics, Tokyo, Japan 2002
    [23] Anderson, D. A., Tannehill, J. C., and Pletcher, R. H., Computational Fluid Mechanics and Heat Transfer, McGraw-Hill, 1987
    [24] Douglas, J.F., Gasiorek, J.M., and Swaffiels, J.A., Fluid Mechanics, 3rd Edition, Longman Group Limited, 1995
    [25] Shyy, W., Computional modeling for fluid flow and interfacial transport, Elsevier, 1994
    [26] http://crss.ucsb.edu/courses/ME156C/Lecture-9/L-9.PDF

    下載圖示 校內:2004-07-07公開
    校外:2004-07-07公開
    QR CODE