簡易檢索 / 詳目顯示

研究生: 廖崇倫
Liao, Chong-Lun
論文名稱: 基於概念模型自動建構技術之智慧型資訊擷取
Ontology Learning to Realize Intelligent Information Retrieval
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 69
中文關鍵詞: 概念模型概念模型自動建構智慧型資訊擷取文件探勘
外文關鍵詞: ontology, text mining, ontology learning, intelligent information retrieval
相關次數: 點閱:96下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   概念模型(ontology)的建構侷限了概念模型的應用與發展,傳統上概念模型的建構是以人工去定義領域概念與概念間的關係,然而人工建構概念模型是費時,費力且因人的主觀意識使得結果極具爭議性,造成概念模型無法普及應用。因此,本論文結合自然語言處理及文件探勘技術由非結構化的領域文集自動建構領域概念模型,自動建構架構包含三個主要部分: 領域專有名詞的萃取、概念探勘及概念階層關係的發掘、非階層語意關係的發掘。最後並提出以概念模型為知識庫的智慧型資訊擷取系統,有效應用此機器自動建構的概念模型。

      An important debate of modern ontology science and technique is how to automatically construct an ontology from the bush of raw data. The traditional methods on constructing domain ontology are manually defining a set of domain terminologies and concepts, and then deciding their relation. However, this task can be lengthy, costly, and controversial because people can have different points of view about the same concept. In this thesis, we develop a new ontology learning method that automatically analyzing and constructing the ontology from domain text. The proposed method utilized several techniques, such as natural language processing and text mining method etc. It comprises three basic stages: the domain terminology extraction, the concepts exploration & concept hierarchy arrangement, and the non-taxonomy relations discovering. We further propose ontology-based intelligent information retrieval system that utilized the resulted ontology to summarize the user query and categorize the retrieval results.

    第一章 簡介... 1 1.1 研究動機... 1 1.2 問題描述... 1 1.3 研究目標... 2 1.4 章節概要... 2 第二章 相關研究... 3 2.1 概念模型的介紹... 3 2.2 概念模型的建構... 5 2.3 概念模型的自動學習建構... 7 2.3.1 領域專有名詞的萃取... 7 2.3.2 概念探勘及概念階層關係的發掘... 11 2.3.3 非階層語意關係的發掘... 12 第三章 概念模型之自動學習建構... 15 3.1 領域專有名詞的萃取... 16 3.1.1 文件前處理... 17 3.1.2 候選專有名詞的選取... 22 3.1.3 領域專有名詞的篩選... 24 3.2 概念探勘與概念階層關係的發掘... 26 3.2.1 概念探勘... 27 3.2.2 以字串包含法則建立概念階層關係... 31 3.2.3 以樣式為基礎的下位詞檢索建立概念階層關係... 32 3.3 非階層語意關係的發掘... 35 3.3.1 建立專名名詞的交易集合... 36 3.3.2 一般化關聯規則探勘... 37 第四章 實驗與結果分析... 39 4.1 實驗設計... 39 4.1.1 實驗資料介紹... 39 4.1.2 實驗流程設計... 40 4.2 實驗結果與分析... 44 4.2.1 分析領域專有名詞的萃取結果... 44 4.2.2 分析概念探勘的結果... 46 4.2.3 分析發掘概念階層關係的結果... 48 4.2.4 分析發掘非階層語意關係的結果... 50 第五章 概念模型於智慧型資訊擷取的應用... 53 第六章 結論及未來研究方向... 56 參考文獻... 58 附錄一 相關術語... 61 附錄二 實驗中人工判斷為正確的資訊擷取領域專有名詞... 62 附錄三 概念模型自動建構系統之展示... 65 A. 領域專有名詞的萃取介面... 65 B. 概念探勘與概念階層關係的發掘介面... 66 C. 非階層語意關係的發掘介面... 67 D. 領域概念模型編輯介面... 68

    [1] A. Maedche , S. Staab, "Ontology Learning for the Semantic Web", IEEE Intelligent Systems, vol.16 no.2, pp.72-79, 2001.

    [2] A. Maedche and S. Staab, "Discovering conceptual relations from text", ECAI 2000 - Proceedings of the 14th European Conference on Artificial Intelligence, pp. 321-325. , 2000

    [3] A. Maedche and S. Staab, "Semi-automatic Engineering of Ontologies from Text", Proceedings of the Twelfth International Conference on Software Engineering and Knowledge Engineering, 2000.

    [4] A. Maedche, "Ontology Learning: Framework, Techniques and a Software Environment", 1st MEANING workshop: Word Sense Disambiguation and Lexical Acquisition, presentation, 2003

    [5] A. Maedche, G. Neumann, S. Staab, "Bootstrapping an Ontology-based Information Extraction System", Studies in Fuzziness and Soft Computing, Intelligent exploration of the web, pp.345-359, 2003.

    [6] B. Gelfand, M. Wulfekuler, and W.F. Punch. "Automated concept extraction from plain text". AAAI Workshop on Text Categorization, pp.13-17, 1998.

    [7] B. Liu, L. C.W. Chin, H.T. Ng, "Mining topic-specific concepts and definitions on the web", ACM SIGIR, pp.20-24, 2003.

    [8] C. Blaschke, A. Valencia, "Automatic ontology construction from the literature". Genome Inform Ser Workshop Genome Inform. issue.13, pp.201-213. 2002.

    [9] C. Fellbaum, WordNet - An electronic lexical database. book MIT Press, Cambridge, Massachusetts and London, England, 1998.

    [10] D.L. McGuinness. "Ontologies Come of Age", In Dieter Fensel, J im Hendler, Henry Lieberman, and Wolfgang Wahlster, editors. Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press, 2002.

    [11] H. Alani,S. Kim, D.E. Millard, M.J. Weal, W. Hall; P.H. Lewis, N.R. Shadbolt, "Automatic ontology-based knowledge extraction from Web documents" IEEE Intelligent Systems, vol.18 , issue.1 , Jan-Feb. 2003.

    [12] H. Schmid, "Probabilistic Part-of-Speech Tagging Using Decision Trees", in Proc. of the First International Conference on New Methods in Natural Language Processing, pp.44-49, 1994.

    [13] J. Gennari, M.A. Musen, R.W. Fergerson, W.E. Grosso, M. Crubezy, H. Eriksson, N.F. Noy, S.W. Tu ,"The Evolution of Protégé : An Environment for Knowledge-Based Systems Development", 2002.

    [14] L. Cai, T. Hofmann, "Text categorization by boosting automatically extracted concepts", ACM SIGIR, pp.182-189, 2003.

    [15] M. Sanderson, W.B. Croft, "Deriving Concept Hierarchies from Text", ACM SIGIR, pp.206-213, 1999.

    [16] N. Guarino, "Formal Ontology and Information Systems", Frontiers in Artificial Intelligence and Applications, vol.46, pp.347, 1998

    [17] N.F. Noy and D.L. McGuinness ,"Ontology Development 101: A Guide to Creating Your First Ontology", 2001.

    [18] P. Velardi, M. Missikoff, R. Basili ,"Identification of relevant terms to support the construction of Domain Ontologies", ACL workshop on Human language Technologies, 2001

    [19] R. Baeza-Yates and B. Ribeiro-Neto. "Modern Information Retrieval", Book, Addision Wesley, 1999.

    [20] R. Fano, "Transmission of Information", MIT Press, Cambridge, MA, 1961.

    [21] R. Navigli and P. Velardi, "Semantic Interpretation of Terminological Strings" Proc. 6th Int'l Conf. Terminology and Knowledge Eng. (TKE2002), INIST-CNRS, Vandoeuvre-les-Nancy, pp.95-100, 2002.

    [22] R. Navigli, P. Velardi, A. Gangemi, "Ontology Learning and its application to automated terminology translation", IEEE Intelligent Systems, vol. 18, pp.22-31, 2003.

    [23] R. Srikant and R. Agrawal, "Mining generalized association rules", Proceedings of the 21th International Conference on Very Large Data Bases, pp.407-419, 1995.

    [24] R.F. Neches, T. Finin, T. Gruber, R. Patil, T. Senator, W.R. Swartout, "Enabling Technology for Knowledge Sharing", AI Magazine, pp.36-56, 1991.

    [25] S. Oyama, T. Kokubo, and T. Ishida, "Domain-Specific Web Search with Keyword Spices", IEEE Transactions on Knowledge and Data Engineering, vol.16, pp.17-27, 2004.

    [26] S.O. Koo, S.Y. Lim, S.J. Lee, "Building an Ontology based on Hub Words for Information Retrieval", IEEE/WIC International Conference on Web Intelligence (WI'03) pp.13-17, 2003.

    [27] T.R. Gruber, "A translation approach to portable ontology specifications", Knowledge Acquisition, pp.199-220, 1993.

    [28] T.R. Gruber, "Toward Principles for the Design of Ontologies Used for Knowledge Sharing", International Journal of Human Computer Studies, pp.907-928, 1995.

    [29] website: KAON (The Karlsruhe Ontology and Semantic Web Framework), http://kaon.semanticweb.org/

    [30] website: PDF2Text in XPDF, http://www.foolabs.com/xpdf/home.html

    [31] website: Protégé 2000, http://protege.stanford.edu/

    [32] website: WordNet, http://www.cogsci.princeton.edu/~wn/

    下載圖示 校內:2005-07-29公開
    校外:2005-07-29公開
    QR CODE