| 研究生: |
洪國議 Hung, Kuo-yi |
|---|---|
| 論文名稱: |
(鈷鉑/銀/碳)n 多層膜之微觀結構與磁性質之研究 Investigation of Microstructure and Magnetic Properties of (CoPt/Ag/C)n Multilayer |
| 指導教授: |
李玉華
Lee, Y. H. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 鈷鉑 、退火 、多層膜 、序化結構 、頑磁場 |
| 外文關鍵詞: | coercivity, anneal, CoPt, multilayer, order structure |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗使用直流磁控濺鍍系統在玻璃基板上製作重複 (CoPt/Ag/C) 多次之多層膜樣品,提供磁性之CoPt膜總厚度固定為300Å,改變Ag膜與C膜厚度總厚度,觀察樣品經過熱處理,樣品的晶格結構、序化程度及磁性質的影響。
首先製作重複3次之多層膜樣品,我們發現無添加Ag層的樣品在經過600℃不同的熱退火時間, XRD圖只顯示出CoPt(111)的繞射峰,但添加Ag層的樣品顯示出代表序化結構的(001)繞射峰。
其次製作重複6次的多層膜樣品,我們將Ag膜總厚度分別固定為20 及30 Å,前者經過600℃退火處理,XRD圖除了主要的(111)峰值還有微弱的(001)峰值,隨著退火溫度提升至700℃,(001)峰值則清楚可見不過依然比(111)峰值強度小非常多;後者在600℃時已有明顯(001)峰值,而且強度比(111)峰值大。磁性方面前者與後者之頑磁場皆隨退火溫度與C膜厚度的提升而變大,不過卻也出現軟磁性的雜相,而磁滯曲線上出現雙肩現象。
最後製作重複9次之多層模樣品,並將Ag膜總厚度固定為30 Å,樣品經600℃退火即可序化,並且頑磁場隨C膜厚度增加而遞減。
顆粒間之交互作用,當樣品經600℃退火處理主要為靜磁交互作用力。但經700℃退火處理,交換偶合為主要之作用力。
We deposited the triple element nanocomposite films of (CoPt/Ag/C)n multilayer as well as CoPt/Ag/C trilayer on the fused-silica substrates by DC magnetron sputtering system keeping the thickness of CoPt at 300Å, in order to investigate the effects of Ag and C layer thickness on the crystal structure、order degree and magnetic properties after annealing, and n is the repetition number.
In the first place, we fabricated the samples of n=3, after annealing only revealed (111) peak in the XRD patterns for the samples not added Ag layers; but ones added Ag layers revealed the (001) peak that means fct order structure.
Secondly, we fabricated the samples of n=6 and varied the Ag thickness 20 and 30 Å, the former annealing at 600 and 700°C have strong (111) peak and weak (001) peak;the later annealing at 600℃ already has obvious (001) peak. Both coercivities increased with the annealing temperature and the thickness of C layer increasing. However, the shoulder leaded by soft magnetic phase was observed at low field in M-H curve.
Finally, we fabricated the samples of n=9 and kept the thickness of Ag at 30Å, after annealing at 600°C. They can become fct structure. The coercivities increased with the thickness of C layer decreasing.
The interaction between the grains originated in the magnetostatic interaction for the samples annealing at 600°C, but mainly in the exchange interaction for the ones annealing at 700°C.
[1] N. Smith, IEEE Trans. Magn., MAG-23, 259 (1987).
[2] L. Neel, Ann. Geophys., 5, 99 (1949).
[3] S. H. Charap, P.-L. Lu, and Y. He, IEEE Trans. Magn. 33, 978 (1997).
[4] D. J. Sellmyer, M. Yu, and R. D. Kirby, Nanostruct. Mater. 12, 1021 (1999).
[5] M. Yu, Y. Liu, and D. J. Sellmyer, J. Appl. Phys. 87, 6959 (2000).
[6] S. Iwasaki and Y. Nakamura, IEEE Trans. Magn. 13, 1271 (1977).
[7] 楊志信,台灣資訊儲存協會會訊,第6期,pp.33-38,(2005)。
[8] R. A. McCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966).
[9] V. Karanasos, I. Panagiotopoulos, D. Niarchos, H. Okumura,
G.C.Hadjipanayis, Appl. Phys. Lett. 79, 1255 (2001).
[10] S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, J. Magn. Magn. Mater. 193, 18 (1999).
[11] E. Manios. V. Karanasos, D. Niarchos, I. Panagiotopoulos, J. Magn. Magn. Mater. 272-276, 2169 (2004).
[12] W. M. Liao, Y. P. Lin, F. T. Yuan, S. K. Chen, J. Magn. Magn. Mater. 272-276, 2175 (2004).
[13] X. H. Xu, H. S. Wu, X. L. Li, F. Wang, Mater. Chem. Phys. 90, 95 (2005).
D. Y. Oh, J. K. Park, J. Appl. Phys. 93, 1661 (2003).
[14] R. A. McCurrie and P. Gaunt, Philos. Mag. 13, 567 (1966).
[15] Y. H. Lee, T. C. Han, J. C. A. Huang and C. R. Lin, J. Appl. Phys. 94, 1975 (2003).
[16] Y. H. Lee, T. C. Han and J. C. A. Huang, J. Appl. Phys. 93, 8462 (2003).
[17] Y. H. Lee, M. S. Guo, C. S. Wur, P. C. Lin and W. H. Li, J. Magn. Magn. Mater. 286, 113 (2005).
[18] 羅吉宗, ”薄膜科技與應用 ”, 全華科技圖書股份有限公司, Chap. 2 (2005)。
[19] 韓岱君, ”含碳化鐵奈米磁顆粒之非晶質碳膜其微觀結構、磁性質與磁阻的研究”, 國立成功大學物理所博士論文, (2003)。
[20] 鐵道生, 錢昆明, ”鐵磁學”, 科學出版社, 44 (1992)。
[21] 張煦, 李學養, ”磁性物理學”, 聯經出版事業公司, (1982)。
[22] P. Weiss, J. Phys. 6, 661 (1907).
[23] B. D. Cullity, ”Introduction to Magnetic Materials”, Addison-Wesley, Reading, MA, (1992).
[24] 許樹恩, 吳泰伯, ”X光繞射原理與材料結構分析”, 中國材料科學學會, (1996)。
[25] R. W. Gao, D. H. Zhang, W. Li, X. M. Li, J. C. Zhang, J. Magn. Magn. Mater. 208, 239 (2000).
[26] J. Fidler, T. Screfl, J. Appl. Phys. 79, 5029 (1996).
[27] K. O'Grady, M. El-Hilo and R. W. Chantrell, IEEE Trans. Magn. 29, 2608 (1993).
[28] T. Hayashi, S. Hirono, M. Tomita, and S. Umemura, Nature (London) 381, 772 (1996).
[29] J.-J. Delaunay, T. Hayashi, M. Tomita, and S. Hirono, J. Appl. Phys. 82, 2200 (1997).
[30] M. Yu, Y. Liu, A. Monser, D. Weller, D. J. Sellmyer, Appl. Phys. Lett. 75, 3992 (1999).
[31] M. Yu, Y. Liu, and D. J. Sellmyer, Appl. Phys. Lett. 87, 6959 (2000).
[32] S. Stavroyiannis, I. Panagiotopoulos, D. Niarchos, J. A. Christodoulides, Y. Zhang, and G. C. Hadjipanayis, Appl. Phys. Lett. 73, 3453 (1998).
[33] C. Chen, O. Kitakami, S. Okamoto, and Y. Shimada, Appl. Phys. Lett. 76, 3218 (2000).
[34] X. H. Xu, Z. G. Yang, H. S. Wu, J. Magn. Magn. Mater. 295, 106 (2005).
[35] X. H. Xu, T. Jin, H. S. Wu, F. Wang, X. L. Li and F. X. Jiang, Thin Solid Films. 515, 5471 (2007).
[36] 羅吉宗, ”薄膜科技與應用 ”, 全華科技圖書股份有限公司, Chap. 7 (2005)。
[37] I. Panagiotopoulos, L. Withanawasam, G. C. Hadjipanayis, J. Magn. Magn. Mater. 152, 353 (1996).