簡易檢索 / 詳目顯示

研究生: 徐嘉隆
Hsu, Chia-Lung
論文名稱: 使用定因素分析之人臉辨識
Face Recognition Using Tied Factor Analysis
指導教授: 連震杰
Lien, Jenn-Jier
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 56
中文關鍵詞: 因素分析生成模型期望值最大化演算法
外文關鍵詞: Factor analysis, generative model, EM algorithm
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來的研究在人臉辨識領域上有長足的進步,同時硬體設備也越來越進步。在這方面的應用也越來越多。我們發現在實際應用上需要解決各種變因對辨識效果的影響。本篇論文以姿態變化為主要探討的方向。用定因素分析作為系統的核心。姿態變化造成的複雜分布,利用多個因素分析的模型去解釋。同時考慮不同姿態下的同一人的影像,應該有潛在的變數能夠解釋這個人的身份,而不受姿態或人臉變因的影響。利用期望值最大化演算法迭代地找出最佳參數。系統在辨識階段,利用各種生成模型去解釋各種資料的生成情形以最可能的模型所對應的情況作為辨識結果。為了加強系統對變異的容忍度,我們採用仿射轉換的正規化方式減少姿態變化的影響,再利用加入多種變因的方式提升系統的辨識能力。

    Recently, there is a significant progress in study of face recognition. Meanwhile, hardware technology advances, too. The face recognition has been applied on more areas. In order to make the face recognition practical, it is required to reduce the effect of variations on performance. In this thesis, we focus on the pose variations problem and take Tied Factor Analysis as the core of system. The concept is to explain the complex distribution caused by pose variations with several Factor Analysis models. Moreover, there exists a certain representation for images that at different poses from the same subject without regard to pose and facial variations. In learning process, the EM algorithm is used to find the optimal parameters iteratively. In recognition process, a variety of generative models are designed to explain the different generative procedures of data, and then take the most likely procedure as the result. To increase the tolerance for variations, we use the Affine Transform normalization to reduce the effect of pose variations. And we add various variations to promote the performance.

    摘要 IV Abstract V 誌謝 VI Table of Contents VII List of Tables IX List of Figures X Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Related Works 2 1.3 System Overview 4 Chapter 2. Tied Factor Analysis 6 2.1 Factor Analysis 6 2.2 Tied Factor Analysis: Concept 13 2.3 Tied Factor Analysis: Formulation 16 Chapter 3. Learning Process 20 3.1 Learning System Parameters 20 3.1.1 Difficulty 20 3.1.2 Solution 22 3.2 E-Step 23 3.3 M-Step 27 3.4 Learning Result 29 Chapter 4. Recognition Process 33 4.1 Similarity and Dissimilarity Measure 34 4.1.1 Similarity Measure 34 4.1.2 Dissimilarity Measure for False Alarm Reduction 39 4.2 Recognition Decision 42 Chapter 5. Experimental Result 45 5.1 Experiment 1: Large Pose Difference 46 5.2 Experiment 2.1 and 2.2: Tolerance of Pose Error 49 Chapter 6. Conclusion 53 Reference 54

    [1] P. Belhumeur, J. Hespanha, and D. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection,” IEEE Trans. on PAMI, Vol. 19, No. 7, pp. 711-720, 1997.
    [2] D. Beymer, “Face Recognition Under Varying Pose,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1994, pp. 756-761.
    [3] D. Beymer and T. Poggio, “Face Recognition from One Example View, ” Proc. Int',l Conf. Computer Vision, pp. 500-507, 1995.
    [4] C. Bishop and N. Nasrabadi, Pattern Recognition and Machine Learning, Vol. 1. New York: springer, 2006.
    [5] B.E. Boser, I.M. Guyon, and V.N. Vapnik, “A Training Algorithm for Optimal Margin Classifiers,“ Proceedings of the fifth annual workshop on Computational learning theory. ACM, 1992.
    [6] T. Cootes, D. Cooper, C. Taylor and J. Graham, “Active Shape Models-Their Training and Application,” Computer Vision and Image Understanding (CVIU), vol. 61, no. 1, pp. 38-59, Jan. 1995.
    [7] A. Dempster, N. Laird and D. Rubin, “Maximum Likelihood from Incomplete Data via the EM Algorithm,” J. Royal Statistical Soc., vol. 39, no. 1, 1977, pp. 1-38.
    [8] Z. Gharamani, G.E. Hinton, “The EM Algorithm for Mixtures of Factor Analyzers,” Technical Report CRG-TR-96-1, Dept. Computer Science, Univ. of Toronto, 1996.
    [9] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Pearson, 2007.
    [10] Y. Gong and W. Xu, Machine Learning for Multimedia Content Analysis, Vol. 30. Springer, 2007.
    [11] R. Gross , I. Matthews, and S. Baker, “Appearance-Based Face Recognition and Light-Fields,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 4, 2004, pp.449 -465.
    [12] G. Guo , S. Li, and K. Chan, “Support Vector Machines for Face Recognition,” Image Vis. Comput., vol. 19, no. 9-10, 2001, pp. 631 -638.
    [13] J. Huang , P. C. Yuen , W. Chen and J. Lai, “Choosing Parameters of Kernel Subspace LDA for Recognition of Face Images Under Pose and Illumination Variations,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 4, 2007, pp.847 -862.
    [14] K. I. Kim, K. Jung, and H. J. Kim, “Face Recognition Using Kernel Principal Component Analysis,” IEEE Signal Processing Lett., vol. 9, 2002, pp.40 -42.
    [15] T.-K. Kim, J. Kittler, R. Cipolla, “Discriminative Learning and Recognition of Image Set Classes Using Canonical Correlations,” IEEE Trans. on PAMI, Vol. 29, No. 6, pp. 1005- 1018, 2007.
    [16] B. Moghaddam and A. Pentland, “Probabilistic Visual Learning for Object Representation, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, v.19 n.7, p.696-710, July 1997.
    [17] H. Murase and S.K. Nayar, “Visual Learning and Recognition of 3-D Objects from Appearance,” International Journal of Computer Vision, Vol. 14, pp. 5-24, 1995.
    [18] A. Pentland, B. Moghaddam and T. Starner, “View-Based and Modular Eigenspaces for Face Recognition,” Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1994, pp. 84-91.
    [19] S.J. D. Prince , J.H. Elder , J. Warrell , F.M. Felisberti, “Tied Factor Analysis for Face Recognition across Large Pose Differences,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 6, 2008, pp. 970-984.
    [20] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction by Locally Linear Embedding,” Science, Vol. 290, 2000, pp.2323-2326.
    [21] B. Schö,lkopf, A. Smola, and K.R. Muller, “Nonlinear Component Analysis as a Kernel Eigenvalue Problem,” Neural Computation, vol. 10, no. 5, pp. 1,299-1,319, 1998.
    [22] L. Sirovitch and M. Kirby, “Low-Dimensional Procedure for the Characterization of Human Faces,” J. Optical Soc. of Am. A, vol. 2, 1987, pp. 519-524.
    [23] J. Tenenbaum and W. T. Freeman, “Separating Style and Content with Bilinear Models,” Neural Computation, 12, 2000, pp. 1247-1283.
    [24] M. Tipping and C. Bishop, “Mixtures of Probabilistic Principal Component Analyzers,” Neural Computation, vol. 11, no. 2, pp. ,443-482, 1999.
    [25] M. Tipping and C. Bishop, “Probabilistic Principal Component Analysis,” Journal of the Royal Statistical Society. Series B, vol. 21, no. 3, pp. 611-622, 1999.
    [26] M. Turk and A. Pentland, “Eigenfaces for Recognition,” Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp. 73-86, 1991.
    [27] K. Q. Weinberger, J. Blitzer and L. K. Saul, “Distance Metric Learning for Large Margin Nearest Neighbor Classification,” Journal of Machine Learning Research, Vol. 10, pp. 209-244, 2009.
    [28] S. Yan, D. Xu, B. Zhang, and H. Zhang,“Graph Embedding: A General Framework for Dimensionality Reduction,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 1, pp. 40-41, 2007.
    [29] X. Zhang and Y. Gao, “Face Recognition Across Pose: A Review,” Pattern Recognition, Vol. 42, pp. 2876-2896, 2009.
    [30] W. Zhao, R. Chellappa, P.J. Phillips and A. Rosenfeld, “Face Recognition: A Literature Survey,” ACM Computing Surveys, Vol. 35, No. 4, Dec. 2003, pp. 399-458.

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE