| 研究生: |
李佩珊 Li, Pei-shan |
|---|---|
| 論文名稱: |
孔洞性三氧化鎢薄膜光分解水電極之製備與研究 Synthesis and Study of Porous WO3 Films as Photoelectrodes for Water Splitting |
| 指導教授: |
鄧熙聖
Teng, Hsisheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 溶膠-凝膠法 、三氧化鎢 、分解水 、半導體性質 、雙電池 |
| 外文關鍵詞: | semiconductin, tungsten trioxide, sol-gel method |
| 相關次數: | 點閱:183 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究是利用溶膠-凝膠法製備n型半導體金屬氧化膜三氧化鎢,作為光分解水的陽極電極。藉由在膠態溶液加入非離子型界面活性劑P123作為模版,經由鍛燒過後合成出具有孔洞性的三氧化鎢薄膜。關於三氧化鎢的結晶結構和光電化學性質,在本研究有詳細探討。經由X光繞射、拉曼光譜分析、掃描式以及穿透式電子顯微鏡的鑑定,三氧化鎢為單斜晶相的結構,尺吋約為20~50 nm的單晶奈米顆粒,顆粒間相互交聯成中孔洞的結構。
鍛燒的條件影響三氧化鎢薄膜的光電化學性質。利用500C鍛燒的三氧化鎢薄膜,在AM 1.5的太陽光模擬照射下,1 M HClO4水溶液中,可以達到最大的光電流應答2.4 mA/cm2。三氧化鎢的能隙值約為2.7 eV,是適合作為吸收可見光的半導體氧化物。經由Mott-Schottky分析及循環伏安法鑑定了三氧化鎢薄膜的半導體特性,包括有導帶和價帶的位置、平帶位置和載子濃度。
我們也利用三氧化鎢薄膜電極串聯染料敏化太陽能電池組成一個雙電池系統(Tandem cell),在照光之下進行分解水反應,三氧化鎢薄膜是做為雙電池中首先受到光照射的前方電極,此雙電池將太陽能轉化成化學能分解水的效率約為2 %。
We developed an unsophisticate sol-gel synthesis route for n-type WO3 mesoporous films that served as oxygen-evolving photoelectrodes for water splitting. A block copolymer, P123, was used as template in synthesis and was removed by calcinations, leading to formation of the porous WO3 films. Characterization of the WO3 films has been performed by using X-ray diffraction, Raman spectroscopy, transmission electron microscopy and scanning electron microscopy. The results indicated that the WO3 films were in the monoclinic WO3 phase and consisted of 20-50 nm single-crystalline nanoparticles interconnected to form a mesoporous structure.
The photoelectrochemical properties of the WO3 films were found to depend on the calcination conditions. The maximum photocurrent density of 2.4 mA/cm2 from 1 M HClO4 was obtained from the WO3 film synthesized with 500C calcination. The band gap energy of the WO3 was found to be ca. 2.7 eV, suitable for visible light absorption. The Mott-Schottky method and cyclic voltammetry were employed to characterize the semiconducting properties of the WO3 films, which included the potentials of the conduction and valence band edges and flat band potential, and the donor density.
This developed WO3 film can be coupled with a dye sensitized solar cell in a tandem cell to split water under illumination. The WO3 film was served as a front electrode in a tandem cell that yielded a solar-to-chemical conversion efficiency of 2%.
[1]Grätzel, M. Nature 2001, 414, 338.
[2]Cox, P.A. Transition Metal Oxides; Clarendon Press, Oxford, 1995.
[3]Woodward, P. M.; Sleight, A.; Vogt, W. T. J. Solid State Chem. 1997, 131, 9.
[4]Solonin, Y. M. O.; Khyzhun, Y.; Graivoronskaya, E. A. Cryst. Growth Des. 2001, 1, 473.
[5]Souza Filho, A. G.; Mendes Filho, J.; Freire, V. N.; Ayala, A. P.; Sasaki, J. M.; Freire, P. T. C.; Melo, F. E. A.; Juliäo, J. F.; Gomes, U. U. J. Raman Spectrosc. 2001, 32, 695.
[6]Santato, C.; Odziemkowski M.; Ulmann, M.; Augustynski, J. J. Am. Chem. Soc. 2001, 123, 10639.
[7]Kehl, W.; Hay, R.; Wahl, D. J. Appl. Phys. 1952, 23, 212.
[8]Saljie, E. Acta crystallogr. B 1977, 33, 547.
[9]Tanisaki, S. J. Phys. Soc. Jpn. 1960, 15, 573.
[10]Loopstra, B.O.; Rietveld, H. Acta Crystallogr. B 1969, 25, 1420.
[11]Diehl, R.; Brandt, G.; Saljie, E. Acta Crystallogr. B 1978, 34, 1105.
[12]Woodward, P.; Sleight, A.; Vogt, T. J. Phys. Chem. Solids 1995, 56, 1035.
[13]Saljie, E. Ferroelectrics 1976, 12, 215.
[14]LeGore, L. J.; Lad, R. J.; Moulzolf, S. C.; Vetelino, J. F.; Frederick, B. G.; Kenik, E. A. Thin Solid Films. 2002, 406, 79.
[15]Mitsugi, F.; Hiraiwa, E.; Ikegami, T.; Ebihara, K. Surf. Coat. Technol. 2003, 553, 169.
[16]Irie, H.; Mori, H.; Hashimoto, K. Vacuum 2004, 74, 625.
[17]Ozer, N. Thin Solid Films 1997, 304, 310.
[18]Granqvist, C. G. Sol. Energy Mater. Sol. Cells 2000, 60, 201.
[19]Beck, F.; Dahlhaus, M. J. Appl. Electrochem. 1993, 23, 781.
[20]Granqvist, C. G.; Azens, A.; Hjelm, A.; Kullman, L.; Niklasson, G. A.; Ronnow, D.; Mattsson, M. S.; Veszelei, M.; Vaivars, G. Solar Energy 1998, 63, 199.
[21]Babinec, S. J. Sol. Energy Mater. Sol. Cells 1992, 25, 269.
[22]Goldner, R. B.; Norton, P.; Wong, K.; Foley, G.; Goldner, E. L.; Seward, G.; Chapman, R. Appl. Phys. Lett. 1985, 47, 536.
[23]Le´austic, A.; Babonneau, F.; Chemseddine, A.; Livage, J. New. J. Chem. 1989, 13, 111.
[24]Bedja, I.; Hotchandani, S;. Carpentier, R.; Vinodgopal, K.; Kamat, P. V.; Thin Solid Films 1994, 247, 195.
[25]Santato, C.; Ulmann, M.; Augustynski, J Adv. Mater. 2001, 13, 511.
[26]Santato, C.; Ulmann, M.; Augustynski, J. J. Phys. Chem. B 2001, 105, 936.
[27]Grätzel, M. Chem. Lett. 2005, 34, 8.
[28]Wolcott, A.; Kuykendall, T. R.; Chen, W.; Chen, S.; Zhang, J. Z. J. Phys. Chem. B 2006, 110, 25288.
[29]Jirhennsons, B.; Straumanis, M. E. Colloid Chemistry; McMillan Co., New York, 1962.
[30]陳慧英, 溶膠凝膠法在薄膜製備上之應用, 化工技術, 第80期, 11月, 1999.
[31]Walton, R. A. Prog. Inorg. Chem. 1972, 16, 1.
[32]Judeinstein, P.; Livage, J. J. Mater. Chem. 1991, 1.
[33]Cantalini, C.; Atashbar, M. Z.; Li, Y.; Ghantasala, M. K.; Santucci, S.; Wlodarski, W.; Passacantando, M. J. Vac. Sci. Technol. A 1999, 17, 1873.
[34]Cheng, W.; Baudrin, E.; Dunn, B.; Zink, J. I. J. Mater. Chem. 2001, 11, 92.
[35]Ozkan, E.; Lee, S.-H.; Liu, P.; Tracy, C. E.; Tepehan, F. Z.; Pitts, J. R.; Deb, S. K. Solid State Ion. 2002, 149, 139.
[36]Badilescu, S.; Ashrit, P. V. Solid State Ion. 2003, 158, 187.
[37]Rosen, M. J. Surfactants and Interfacial Phenomena; Wiley, 1978.
[38]Todros, T. F. Surfactants; Academic Press, London, 1984.
[39]Moroi, Y. Micelles, 1911.
[40]張有義; 郭蘭生, 膠體界面化學入門, 高立, 1988.
[41]王鳳英, 界面活性劑, 高立, 1933.
[42]林君玲, 三區塊共聚物高分子應用於中孔洞氧化矽晶體合成的研究, 國立成功大學化學工程研究所碩士論文, 2006.
[43]張正明, 酸性下中孔徑分子篩的反應機構之探討, 中原大學化學系碩士論文 2002.
[44]Finklea, H.O. Semiconductor Electrodes; Elsevier, New York, 1988.
[45]Memming, R. Semiconductor Electrochemistry; Wiley-VCH, New York, 2001.
[46]Macdonald, J.R. Impedance Spectroscopy: Emphasizing Solid Materials and Systems; Wiley, New York, 1987.
[47]Brett, C.M.A.; Brett, A.M.O. Electrochemistry: Principles, Methods, and Applications; Oxford, New York, 1993.
[48]Adlkofer, K.; Tanaka, M. Langmuir 2001, 17, 4267.
[49]Licht, S. Semiconductor Electrodes and Photoelectrochemistry; Wiley-VCH, Weinheim, 2002.
[50]Becquerel, A.E. Acad. Science 1839, 9, 561.
[51]Brattain, W.H.; Garret, C.G.B. Semiconductor Surface Phenomena in Semiconducting Materials; Proc. Conf. Univ. Reading, England, 1951, 37.
[52]Brattain, W.H.; Garrett, C.G.B. Phys. Rev. 1955, 99, 376.
[53]Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[54]Gerischer, H. Semiconductor Electrochemistry: in Physical Chemistry: An Advanced Ttreatise; Academic Press, New York, 1970, p.463.
[55]Myamlin, V.A.; Pleskov, Y.V. Electrochemistry of Semiconductors; Plenum Press, New York, 1967.
[56]Fujishima, A.; Rao, T.N.; Tryk, D.A. J. Photochem. Photobiol. C: Photochem. Rev. 2000, 1, 1.
[57]Sato, N. Electrochemistry at Metal and semiconductor electrodes; Elsevier, New York, 1998.
[58]Cullity, B.D.; Stock, S.R. Elements of X-Ray Diffraction; Prentice Hall, Upper Saddle River, 2001.
[59]蔡淑慧, 拉曼光譜在奈米碳管檢測上之應用, 奈米通訊,第12卷第2期,財團法人國家實驗研究院, 2005
[60]林宛嫺, 溶膠凝膠法與固相法合成鉭酸鈉及其應用於紫外光分解水製氫之研究, 國立成功大學化學工程研究所碩士論文, 2006.
[61]Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534.
[62]Chemseddine, A.; Henry, M.; Livage, J. Rev. Chim. Miner. 1984, 21, 487.
[63]Kraft, T.; Nickel, K. G. J. Mater. Chem. 2000, 10, 671.
[64]Odziemkowski, M.; Koziel, J.; Irish, D. E.; Pawliszyn, J. Anal. Chem. 2001, 73, 3131.
[65]Daniel, M. F.; Desbat, B.; Lassegues, J. C.; Gerand, B.; Figlarz, M. J. Solid State Chem. 1987, 67, 235.
[66]Balamurugan, B.; Aruna, I.; Mehta, B. R.; Shivaprasad, S. M. Phys. Rev. B 2004, 69, 165419.
[67]Nian, J.-N.; Teng, H. J. Phys. Chem. B 2006, 110, 4193.