簡易檢索 / 詳目顯示

研究生: 陳運賢
Chen, Yun-Hsien
論文名稱: 金屬高架地板之耐震研究
Experimental and Numerical Studies on the Earthquake Response of Metal Elevated Floor
指導教授: 姚昭智
Yao, G. C.
學位類別: 碩士
Master
系所名稱: 規劃與設計學院 - 建築學系
Department of Architecture
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 106
中文關鍵詞: 高架地板抗震能力設備物高寬比固定
外文關鍵詞: raised floor, seismic capacity, equipment, ratio aspect
相關次數: 點閱:82下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣位處環太平洋地震帶,建築結構主體與非結構物於地震期間常遭受破壞,因此了解結構物的耐震性能成為重要課題。眾多相關地震報告中,大多數為建築結構主體之研究,然而對於建築物中具有同等重要性的非結構物,如高架地板、輕鋼架天花板、隔間牆、樓梯等,近年來亦逐漸受到重視。
    本文以高科技廠房之高架地板為研究對象,由於高架地板能有效收納管線與線路,幫助空間使用保持完整,如今已被廣泛使用於各類型建築物,而高科技廠房,往往需要在高架地板上架設安裝許多貴重儀器,故須有更高的防震規格。然而國內對於高架地板的耐震性能,相關研究仍十分缺乏。
    有鑑於此,本研究乃於國家地震工程研究中心(NCREE)進行高架地板之震動台實驗。本實驗之目的在於從足尺震動台測試,掌握現有科技廠房高架地板的耐震性能,包括不同設備物重量等級與高寬比,以及常用設備物固定工法對高架地板受地震力時破壞發生的影響,以了解現有系統之耐震弱點,作為日後補強之依據。
    高架地板震動台之實驗結果,亦與工程界常用的SAP2000分析資料與結果,來進行比較。探討有使用耐震固定器及無使用耐震固定器之設備物放置於高架地板上,在最大加速度為0.96g之地震下,高架地板可容許之設備物高寬比與設備物重量等級之關係。過程中並針對現有高科技廠房之耐震固定器做各個方向的材料力學特性試驗,以做為SAP2000參數設定之依據。
    在進行高架地板震動台試驗後,與SAP電腦模型分析進行交叉比對後,發現分析結果與實驗成果吻合度高,並得到以下結論:
    1. 現有高科技廠房高架地板的耐震缺失有:拉桿彎鉤處受拉後開口變大失去原本功能、支柱受拉後破壞易集中於抗剪螺栓、地震力作用下力量僅傳遞至設備物腳架底下支柱,無法傳遞至周圍支柱,形成破壞集中。
    2. 由電腦數值分析結果判定最大加速度0.96g下,可容許的設備物高寬比,以及可容許的設備物載重,如下圖表一所示。
    3. 使用相同1500型之高架地板面板,若想提升高架地板支柱柱頭螺絲抗剪能力,以螺絲可承受1716.2kgf為宜,以A36鋼材為例,螺絲半徑應為0.736cm。如此,面版與抗剪螺絲將會同時壞掉。
    4. 高架地板若要增強其耐震能力,首要加高架地板支柱柱頭強抗剪螺栓的強度;其次為提高高架地板面板的抗拉及抗壓能力,提昇面板之剛度降伏位移量,如此能夠有效提升整體高架地板之耐震能力。

    Taiwan is in the Circum-Pacific seismic zone, the building structures and the non-structure components in Taiwan are exposed to high seismic risks. As the safety of the structural systems has been well improved in the recent decades, many studies have also emphasized the importance of enhancing the seismic security of the non-structural components, including the raised access floors (RAF), suspension ceilings, architectural partitions, and so on.
    The RAF system has been widely used in the factories, hospitals, and office buildings, for they can help arrange the piping and electrical wiring system to enhance the environmental quality. However, the reconnaissance reports revealed that the RAF system may be damaged under moderate earthquakes. Therefore, in this study, full scaled shake table tests were conducted in National Center for Research on Earthquake Engineering (NCREE) to study the dynamic behaviours of the RAF systems and to improve their seismic performances. The testing setup included a (L)x(W)x(H) RAF system with a steel frame equipment specimen located on it, and the main parameters were the weight, height to width ratio, and the restraint condition of the equipment specimen.
    A numerical model was also built in the SAP2000 program to analyze the behaviours of the RAF systems with different equipment under severe seismic input of 0.96g, and the analytical results were verified by the experimental data. In the experiments, the push tests were performed on the retainers of the equipment specimens to identify their mechanical properties to help establish the numerical models.
    Compared the shake table testing results and the numerical analysis, good agreement was observed between the two. The experimental and analytical study yielded the main findings listed as following:
    1. The testing result showed that in the current practical situation in high-tech factories, the deficiencies of the RAF systems include: 1) the hook of the tension link element would deformed and lose its function, 2) pulling out of the pedestals bolts under the RAF systems may occur when vertical tension is applied to the system, and 3) the seismic forces would concentrate on the pedestals right below the equipment and unable to transmit to the whole system.
    2. The SAP2000 analytical results showed that under the 0.96g seismic inputs, when the weight of the equipment on the RAF system varied from 450, 350, 300, 200, 100 to 50kg, the corresponding allowable height to width ratio were 0.5, 1.0, 1.5, 2.0, 2.5, and 50, respectively. Show as fig 1.
    3. For using the 1500 type panels in the RAF systems, the shear-resistant capacity of the screws on the top of the pedestals should be larger than 1717kg. For example, the diameter of the screw should not be less than 0.736cm if it is made of A36 steel. Thus, the shear-resistant bolt can break as the panel breaks.
    4. The studying result showed that to enhance the shear-resistant capacity of the screws on the top of the pedestals can improve the seismic performance of the RAF systems the most. Moreover, to strengthen the out-of-plane strength of the panels and increase their yielding displacement can further raise the seismic capacity of the RAF systems.

    第一章 緒論---------------------------------------------1-1 1-1研究背景與目的-----------------------------------------1-1 1-2研究方法與章節架構--------------------------------------1-2 第二章 高架地板耐震性能震動台實驗--------------------------2-1 2-1實驗目的-----------------------------------------------2-1 2-2實驗概要-----------------------------------------------2-1 2-2-1實驗設置及試體規劃------------------------------------2-1 2-2-2輸入震波---------------------------------------------2-3 2-2-3實驗流程、結果記錄與量測系統---------------------------2-4 2-3實驗結果-----------------------------------------------2-6 2-3-1破壞模式---------------------------------------------2-6 2-3-2各荷重等級下高寬比與PA關係----------------------------2-10 2-4小結-------------------------------------------------2-15 第三章 高架地板數值模型分析-------------------------------3-1 3-1分析目的-----------------------------------------------3-1 3-2模型設定-----------------------------------------------3-2 3-2-1軟體簡介---------------------------------------------3-2 3-2-2基本設定---------------------------------------------3-2 3-2-3模型細部設定-----------------------------------------3-3 3-3分析結果-----------------------------------------------3-7 3-4與實驗結果比較-----------------------------------------3-8 3-5小結--------------------------------------------------3-9 第四章 鎖(L型)與拉桿(C型組)之固定器特性實驗----------------4-1 4-1實驗目的-----------------------------------------------4-1 4-2實驗概要-----------------------------------------------4-1 4-3實驗器材設置及試體實驗規劃-------------------------------4-3 4-4量測系統、實驗流程與結果記錄-----------------------------4-4 4-4-1量測系統---------------------------------------------4-4 4-4-2實驗流程---------------------------------------------4-4 4-4-3結果記錄--------------------------------------------4-11 4-5實驗數據分析------------------------------------------4-25 4-5-1數據分析目的----------------------------------------4-25 4-5-2數據分析流程----------------------------------------4-25 第五章 有固定器(鎖與拉桿)之高架地板數值模型分析-------------5-1 5-1分析目的-----------------------------------------------5-1 5-2模型設定-----------------------------------------------5-2 5-2-1軟體簡介---------------------------------------------5-2 5-2-2基本設定---------------------------------------------5-2 5-2-3模型細部設定-----------------------------------------5-2 5-2-4模型設定概念-----------------------------------------5-5 5-2-5模型細部設定組合--------------------------------------5-7 5-3分析結果-----------------------------------------------5-8 5-3-1判定下壓破壞點---------------------------------------5-8 5-3-2判定上拉破壞點---------------------------------------5-8 5-3-3數值模型分析結果-------------------------------------5-10 5-4與實驗結果比較----------------------------------------5-12 5-5提升高架地板柱頭螺絲強度之比較--------------------------5-13 5-6小結-------------------------------------------------5-17 第六章 結論與建議----------------------------------------6-1

    [1] 周志雄 「高架地板系統震動台研究」,國立台北科技大學土木與防災研究所碩士學位論文,台北,台灣,(2002)。
    [2] 陳威良「架高地板之結構耐震研究」,國立成功大學航空太空工程學系碩士論文,台南,台灣,(1997)。
    [3] Finance, Insurance and Monetary Services (FIMS), INC. Data Processing Facilities: Guidelines for earthquake hazard mitigation, VSP Associates, CA. USA. (1987)
    [4] 日本建築學會「非構造部材の耐震設計施工指針・同解説および耐震設計施工要領」,pp.207-216,日本建築學會(AIJ),東京,日本,(2003)。
    [5] 橫山裕,片木詩子,橫井健,小野英哲フリーアクセスフロアの耐震性評価用入力波の設定,日本建築學會構造系論文集,No.595, pp.37-44,(2005)。
    [6] ICC Evaluation Service Acceptance criteria for seismic qualification by shake-table testing of nonstructural components and systems, AC156, CA., USA. (2007)
    [7] 金子美香,林康裕剛体の転倒限界に関する基礎的検討,日本建築學會構造系論文集,No.479, pp.41-49,(1996)。
    [8] Applied Technology Council Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components, FEMA461, Washington, D.C., USA. (2007)
    [9] Ceiling & Interior Systems Construction Association Recommended test procedures for access floors, Ceiling & Interior Systems Construction Association (CISCA), IL., USA. (2007)

    下載圖示 校內:2015-08-25公開
    校外:2015-08-25公開
    QR CODE