簡易檢索 / 詳目顯示

研究生: 蕭昱
Hsiao, Yu
論文名稱: 潰壩式湧波通過光滑及動床斜坡之試驗研究
Experimental Study on Dambreak-Generated Bores on Smooth and Mobile Slopes
指導教授: 吳昀達
Wu, Yun-Ta
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 124
中文關鍵詞: 非衰減湧波動床斜坡質點影像流速儀底床剪力地下水水工模型試驗
外文關鍵詞: non-decaying bore, mobile slope, particle image velocimetry, bed shear stress, groundwater level, laboratory experiment
相關次數: 點閱:98下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究於國立成功大學水利及海洋工程學系波浪動力學研究室斷面水槽中進行,蓄水段固定為8公尺長、水平發展段長度約6公尺,進行以潰壩機制產生非衰減湧波沖刷1/10斜坡之系列實驗。以光滑及中值粒徑分別為1.2及3.31毫米之細砂與礫石動床斜坡進行實驗,對湧波溯升高、溢淹水深、速度場、底床剪力、地下水位進行探討,且全程以非侵入式量測進行。溯升高度與溢淹水深量測延續Huang (2021)之47種湧波實驗條件,與光滑斜坡之量測結果及其所提出之經驗公式進行比較,並計算相應之衰減因子;速度場、底床剪力及地下水位則以完全發展湧波為研究對象,設定水平發展段及蓄水段水深分別為0.1及0.24公尺進行之。速度場、底床剪力以初始岸線位置為量測範圍、地下水位則觀測最大溯升位置鄰近區域。
    根據實驗結果計算衰減因子,其中以弱湧波者歧異性較大,係由於弱湧波於光滑斜坡溯升之噴濺現象所致。將平均衰減因子除回動床斜坡之量測數據並與光滑斜坡者相比較,其相關係數皆達0.9830以上,足證其具良好相似性。
    湧波沖刷行為依據其水平流速演變可概略分為溯升、第一次溯降、停滯、第二次溯降等四個階段。溯升階段時於垂直流速可見其具有上下震盪行為;第一次溯降時由下方水體先行轉換方向,由於細砂動床者邊界層效應明顯、粗糙度亦不致抑制底床附近之水體流動,因此流場反轉現象較光滑與礫石者顯著;第二次溯降由於方才經歷停滯階段,上下水體一致處於靜止狀態,爾後亦一致進行溯降,因此無流場反轉現象;兩種動床斜坡之垂直速度場中,於停滯與第二次溯降時可見底床附近有水體滲出,此現象與Longuet-Higgins (1983)以染劑進行規則波沖刷透水斜坡之地下水流動可視化研究結果相符,且於初始岸線靠近沖刷帶之位置較為明顯,近碎波帶處則受水深與水壓抑制。
    兩種剪力計算公式求得之時序列趨勢相近,均於湧波剛抵達斜坡時到達頂峰,而後便逐漸下降。其中光滑底床者下降較快、動床者則於峰值維持較長時間方才下降,此因其粗糙度使剪力量值較大所;以Swart公式計算之剪力量值普遍偏高,且兩種公式之計算結果差異性隨底床粗糙度上升而變高,與O'Donoghue et al. (2016)所述相符。
    地下水位變動可依出現位置與移動機制區分為湧波水體入滲與水位抬升入滲兩種。其中礫石動床以水位抬升入滲為主要地下水來源、細砂動床則以湧波下滲為主。當湧波進入停滯階段,細砂動床者持續有水位抬升入滲地下水進入觀測區域,礫石動床者則否。
    本研究透過非侵入式量測進行潰壩式湧波沖刷1/10斜坡之系列實驗,於溯升高度與溢淹水深量測中與光滑斜坡相比較,計算不同類型湧波之溯升高度與溢淹水深於細砂與礫石斜坡之衰減量,提供量化之衰減因子數據;速度場方面發現湧波流速可區分為四個階段,以及底床粗糙度與流場反轉現象之關聯性,提供非衰減完全發展湧波之流速資訊;藉由剪力計算結果發現底床粗糙度與兩種計算公式差異量之關係,提供量化之剪力資訊與不同理論計算結果之差異;地下水位量測則提出其於細砂與礫石動床之流動方式差異,提供預測地下水流動之參考。

    This study presents a series of experiments of swash flows generated by non-decaying bores. Sand, gravel and acrylic plates were used to build mobile and smooth slopes. Runup height, inundation depth, flow velocity, bed shear stress, and groundwater level were measured by non-intrusive instruments. Runup height and inundation depth measurements were performed with the same strength and scale of bores as used in Huang (2021), whose empirical formulas were used and methodologies for estimating reduction factors of different slopes were adopted. Flow velocity in the surf- and swash zones was measured using particle image velocimetry (PIV), and the associated bed shear stress were calculated based on PIV measurements. Image analysis techniques were applied for measuring groundwater level fluctuations.
    Based on the measured runup heights, the reduction factors show consistent agreements for different types of bores for which discrepancy of reduction factors of weak bores is larger than the other types of bores.
    Four stages were observed based on flow field measurements: runup, 1st rundown, stagnant, 2nd rundown. During flow reversal, velocity vectors near bottom will change their direction earlier than those near free surface since the presence of boundary layer. For mobile slopes, exfiltration happens at swash zone during stage 3 and 4.
    The trend of bed shear stress obtained from using two different formulas are indeed different but similar. For smooth slope, the values of shear stress rapidly decrease at t√(g/h_0 )=47.42, with a good agreement using these two formulas.
    For gravel beach, groundwater motion was driven by raising up elevation of water column outside of the beach; on the other hand, gravity dominates the motion of groundwater for the case of sandy beach.

    摘要 I 誌謝 XIV 目錄 XVI 表目錄 XX 圖目錄 XXI 符號表 XXX 第一章、 緒論 1 1.1 研究動機 1 1.2 文獻回顧 5 1.2.1 不透水光滑、粗糙底床 5 1.2.2 透水粗糙定床 10 1.2.3 透水粗糙動床 11 1.3 研究目的 14 1.4 本文架構 16 第二章、 實驗儀器設備 18 2.1 斷面水槽 18 2.1.1 水槽結構與配置 18 2.1.2 潰壩閘門 20 2.1.3 光滑不透水底床 21 2.1.4 粗糙透水動床 21 2.2 波高計與資料擷取系統 24 2.2.1 超音波式波高計 24 2.2.2 資料擷取系統與設置 25 2.2.3 波高計率定 25 2.3 岸線位置量測 28 2.3.1 相機架設 28 2.3.2 閘門開啟輔助燈源 28 2.4 質點影像測速儀 29 2.4.1 雷射光頁 29 2.4.2 高速攝影機 33 2.4.3 二氧化鈦 35 2.4.4 分析軟體設定 35 2.4.5 量測範圍 36 2.5 地下水位量測 37 2.5.1 單眼攝影機 37 2.5.2 光源 37 第三章、 研究方法 39 3.1 實驗條件及湧波強度定義 39 3.2 自由液面 43 3.3 溯升高度 45 3.3.1 岸線追蹤流程 45 3.3.2 最大、平均溯升高與衰減因子之計算與定義 47 3.4 速度場量測 49 3.4.1 自由液面與動床斜坡高程擷取 49 3.4.2 拍攝時段 56 3.4.3 速度場分析 60 3.4.4 無因次化參數設定 65 3.5 底床剪力計算 66 3.6 地下水位量測 69 第四章、 結果與討論 74 4.1 溯升高度 74 4.2 最大溢淹水深 78 4.3 速度場 80 4.3.1 流場行為簡述 80 4.3.2 流場行為之差異與比較 84 4.4 底床剪力 100 4.4.1 深度平均水平流速 100 4.4.2 不同斜坡之剪力值比較 100 4.4.3 不同剪力計算公式之結果比較 103 4.5 地下水位量測 106 4.5.1 地下水位運動方式觀察 106 4.5.2 不同斜坡之地下水位量測結果比較 108 第五章、 結論與建議 111 5.1 結論 111 5.2 建議 114 參考文獻 115 附錄 122 A. 實驗條件 122 B. 最小二乘法平滑濾鏡(Savitzky-Golay filter)設定 123 C. 移動平均濾波器 124

    Barnes, M. and Baldock, T.E., 2007. Direct bed shear stress measurements in laboratory swash. Journal of Coastal Research: 641-645.
    Barnes, M.P., O'Donoghue, T., Alsina, J. and Baldock, T., 2009. Direct bed shear stress measurements in bore-driven swash. Coastal Engineering, 56(8): 853-867.
    Barranco, I., Higuera, P. and Liu, P.L.-F., 2019. Physical and numerical modelling of tsunami-like bores surf and swash flows. Hydraulic Engineering Repository: 545-554.
    Barranco, I. and Liu, P.L.-F., 2021. Run-up and inundation generated by non-decaying dam-break bores on a planar beach. Journal of Fluid Mechanics, 915(A81): A81.1-A81.29.
    Briggs, M.J., Synolakis, C.E., Harkins, G.S. and Green, D.R., 1995. Laboratory experiments of tsunami runup on a circular island. Pure and Applied Geophysics, 144(3): 569-593.
    Chan, I.C. and Liu, P.L.F., 2012. On the runup of long waves on a plane beach. Journal of Geophysical Research: Oceans, 117, C08006.
    Colebrook, C.F., 1939. Turbulent flow in pipes, with particular reference to the transition region between smooth and rough pipe laws. Journal of the Institution of Civil Engineers, 11: 133-156.
    Conley, D.C. and Griffin, J.G., 2004. Direct measurements of bed stress under swash in the field. Journal of Geophysical Research: Oceans, 109, C03050.
    Dai, H.-J., Kikkert, G.A., Chen, B.-T. and Pokrajac, D., 2017. Entrained air in bore-driven swash on an impermeable rough slope. Coastal Engineering, 121: 26-43.
    Heiss, J.W., Puleo, J.A., Ullman, W.J. and Michael, H.A., 2015. Coupled surface‐subsurface hydrologic measurements reveal infiltration, recharge, and discharge dynamics across the swash zone of a sandy beach. Water Resources Research, 51(11): 8834-8853.
    Higuera, P., Liu, P.-F., Lin, C., Wong, W.-Y. and Kao, M.-J., 2018. Laboratory-scale swash flows generated by a non-breaking solitary wave on a steep slope. Journal of Fluid Mechanics, 847: 186-227.
    Huang, Y.-C., 2021. Experimental study on the runup of dambreak-generated bores on smooth and rough slopes. Master thesis, National Cheng Kung University, Taiwan.
    Jiang, Z. and Baldock, T.E., 2015. Direct bed shear measurements under loose bed swash flows. Coastal Engineering, 100: 67-76.
    Kikkert, G.A., O'Donoghue, T., Pokrajac, D. and Dodd, N., 2012. Experimental study of bore-driven swash hydrodynamics on impermeable rough slopes. Coastal Engineering, 60: 149-166.
    Kikkert, G.A., Pokrajac, D., O'Donoghue, T. and Steenhauer, K., 2013. Experimental study of bore-driven swash hydrodynamics on permeable rough slopes. Coastal Engineering, 79: 42-56.
    Kobayashi, N. and Lawrence, A.R., 2004. Cross‐shore sediment transport under breaking solitary waves. Journal of Geophysical Research: Oceans, 109, C03047.
    Li, Y., 2000. Tsunamis: Non-breaking and breaking solitary wave run-up. Ph.D. Thesis, California Institute of Technology, The United States of America.
    Li, Y. and Raichlen, F., 2001. Solitary wave runup on plane slopes. Journal of Waterway, Port, Coastal, and Ocean Engineering, 127(1): 33-44.
    Li, Y. and Raichlen, F., 2002. Non-breaking and breaking solitary wave run-up. Journal of Fluid Mechanics, 456: 295-318.
    Li, Y. and Raichlen, F., 2003. Energy balance model for breaking solitary wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 129(2): 47-59.
    Liggett, J., 1994. Fluid mechanics. McGraw-Hill Inc.
    Lin, C. et al., 2019a. Effect of leading waves on velocity distribution of undular bore traveling over sloping bottom. European Journal of Mechanics-B/Fluids, 73: 75-99.
    Lin, C. et al., 2020. Similarities in the free-surface elevations and horizontal velocities of undular bores propagating over a horizontal bed. Physics of Fluids, 32(6): 063605.
    Lin, C. et al., 2019b. Hydrodynamic features of an undular bore traveling on a 1: 20 sloping beach. Water, 11(8): 1556.
    Liu, P.L.-F., Cho, Y.-S., Briggs, M.J., Kanoglu, U. and Synolakis, C.E., 1995. Runup of solitary waves on a circular island. Journal of Fluid Mechanics, 302: 259-285.
    Liu, P.L.-F. et al., 2005. Observations by the international tsunami survey team in Sri Lanka. Science, 308(5728): 1595-1595.
    Longuet-Higgins, M.S., 1983. Wave set-up, percolation and undertow in the surf zone. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 390(1799): 283-291.
    Madsen, P.A., Fuhrman, D.R. and Schäffer, H.A., 2008. On the solitary wave paradigm for tsunamis. Journal of Geophysical Research: Oceans, 113, C12012.
    Masselink, G. and Turner, I., 2012. Large-scale laboratory investigation into the effect of varying back-barrier lagoon water levels on gravel beach morphology and swash zone sediment transport. Coastal Engineering, 63: 23-38.
    Miller, R.L., 1968. Experimental determination of run‐up of undular and fully developed bores. Journal of Geophysical Research, 73(14): 4497-4510.
    Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H., 2011. Survey of 2011 Tohoku earthquake tsunami inundation and run‐up. Geophysical research letters, 38, L00G14.
    Nakagi, T., Kosa, K. and Sato, T., 2016. Evaluation of properties of tsunami in Kuji port. Journal of Japan Society of Civil Engineers, Ser. B2 (In Japanese), 72(2): 1033-1038.
    O'Donoghue, T., Kikkert, G.A., Pokrajac, D., Dodd, N. and Briganti, R., 2016. Intra-swash hydrodynamics and sediment flux for dambreak swash on coarse-grained beaches. Coastal Engineering, 112: 113-130.
    O'Donoghue, T., Pokrajac, D. and Hondebrink, L., 2010. Laboratory and numerical study of dambreak-generated swash on impermeable slopes. Coastal Engineering, 57(5): 513-530.
    Othman, I.K., Baldock, T.E. and Callaghan, D.P., 2014. Measurement and modelling of the influence of grain size and pressure gradient on swash uprush sediment transport. Coastal Engineering, 83: 1-14.
    Pintado-Patiño, J.C., Puleo, J.A., Krafft, D. and Torres-Freyermuth, A., 2021. Hydrodynamics and sediment transport under a dam-break-driven swash: An experimental study. Coastal Engineering, 170: 103986.
    Pujara, N., Liu, P.L.-F. and Yeh, H., 2015. The swash of solitary waves on a plane beach: flow evolution, bed shear stress and run-up. Journal of Fluid Mechanics, 779: 556-597.
    Puleo, J.A., Krafft, D., Pintado-Patiño, J.C. and Bruder, B., 2017. Video-derived near bed and sheet flow sediment particle velocities in dam-break-driven swash. Coastal Engineering, 126: 27-36.
    Radice, A., Malavasi, S. and Ballio, F., 2006. Solid transport measurements through image processing. Experiments in Fluids, 41(5): 721-734.
    Schimmels, S., Sriram, V. and Didenkulova, I., 2016. Tsunami generation in a large scale experimental facility. Coastal Engineering, 110: 32-41.
    Sous, D., Lambert, A., Rey, V. and Michallet, H., 2013. Swash–groundwater dynamics in a sandy beach laboratory experiment. Coastal Engineering, 80: 122-136.
    Steenhauer, K., Pokrajac, D., O'Donoghue, T. and Kikkert, G.A., 2011. Subsurface processes generated by bore‐driven swash on coarse‐grained beaches. Journal of Geophysical Research: Oceans, 116, C04013.
    Stoker, J.J., 1957. Water waves: The mathematical theory with applications, 36. John Wiley & Sons.
    Swart, D.H., 1974. Offshore sediment transport and equilibrium beach profiles. Ph.D. Thesis, Delft University of Technology, Netherlands.
    Takahashi, K. and Tomita, T., 2013. Simulation of the 2011 Tohoku tsunami in Kuji bay using three-dimensional non-hydrostatic numerical model. Journal of Japan Society of Civil Engineers, Ser. B2 (In Japanesse), 69(2): 166-170.
    Tonkin, S., Yeh, H., Kato, F. and Sato, S., 2003. Tsunami scour around a cylinder. Journal of Fluid Mechanics, 496: 165-192.
    Turner, I.L., 1998. Monitoring groundwater dynamics in the littoral zone at seasonal, storm, tide and swash frequencies. Coastal Engineering, 35(1-2): 1-16.
    Wu, L., Feng, D., Shimozono, T. and Okayasu, A., 2014. Sediment flux measurement at high concentration based on image analysis with combined illumination. Journal of Japan Society of Civil Engineers Ser. B2 (Coastal Engineering), 70(2): 736-740.
    Wu, Y.T. and Huang, Y.C., 2020. Runup of dambreak-generated bore on a smooth slope. Proceeding of the 42nd Ocean Engineering Conference, Taiwan: 209-214.
    Yeh, H., Ghazali, A. and Marton, I., 1989. Experimental study of bore run-up. Journal of Fluid Mechanics, 206: 563-578.
    Yeh, H., Liu, P., Briggs, M. and Synolakis, C., 1994. Propagation and amplification of tsunamis at coastal boundaries. Nature, 372(6504): 353-355.

    下載圖示 校內:2025-07-21公開
    校外:2025-07-21公開
    QR CODE