| 研究生: |
莊振軒 Zhuang, Zhen-Xuan |
|---|---|
| 論文名稱: |
火箭初步設計的GUI介面開發與應用 Development and Application of GUI Interface for Preliminary Rocket Design |
| 指導教授: |
楊憲東
Yang, Ciann-Dong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系碩士在職專班 Department of Aeronautics & Astronautics (on the job class) |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 火箭設計 、火箭質量分配 、火箭性能預估 、拉格朗日乘數法 、圖像化使用者介面 |
| 外文關鍵詞: | Rocket Design, Rocket Mass Distribution, Rocket performance estimates, Lagrange Multiplier Method, Graphical User Interface |
| 相關次數: | 點閱:70 下載:11 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著太空探索活動的增加與人造衛星不斷的輸送,火箭技術的發展受到了前所未有的關注。本研究探討了火箭設計中質量分配的優化問題,並提出讓使用者在初步設計階段,即可以更直觀便利的使用GUI介面來進行火箭質量優化分配。火箭的質量分配直接影響其達到預定軌道的能力,包括酬載的質量、推進劑質量和結構質量等。藉由應用高階數學模型和優化算法,試圖找到一種優化的質量分配方式,旨在最大化酬載質量,同時保持火箭結構的穩定性和可靠性。
本文研究首先回顧了火箭發展歷史,並討論火箭採用脫節的方式進行設計,質量分配的現有理論和方法,包括經典的齊奧爾科夫斯基火箭方程的應用。接著,我們引入了基於拉格朗日乘數法的優化方式,允許在考慮多個設計約束條件的情況下進行合理的火箭質量優化分配,以及基礎的軌道方程式,最後基於上述的數學模型,進行火箭初步設計系統的開發。其中介紹該系統的使用方法,接著,展示其應用具體功能,透過實際的火箭進行分析,驗證了該GUI在火箭初步設計中的有效性和實用性。最後,討論了該系統的潛在改進方向和未來應用前景。
In recent years, with the increase in space exploration activities and the continuous deployment of artificial satellites, the development of rocket technology has received unprecedented attention. This study explores the optimization of mass distribution in rocket design and proposes a method for users to optimize mass distribution through a GUI interface, making the preliminary design phase more intuitive and convenient. The mass distribution of a rocket directly affects its ability to reach the designed orbit, including the mass of the payload, propellant, and structural mass. By applying advanced mathematical models and optimization algorithms, we aim to find an optimized mass distribution method that maximizes payload mass while maintaining the stability and reliability of the rocket structure.
This paper first reviews the history of rocket development and discusses the current theories and methods of mass distribution in rocket design, including the application of the classic Tsiolkovsky rocket equation. Next, an optimization method based on the Lagrange multiplier method is introduced, which allows for reasonable mass distribution optimization of the rocket considering multiple design constraints, as well as the basic orbital equations. Based on the mathematical models, a preliminary rocket design system is developed. The usage of this system is introduced, followed by a demonstration of its specific functions. Through the analysis of actual rockets, the effectiveness and practicality of the GUI in the preliminary design of rockets are verified. Finally, the potential improvements and future application prospects of the system are discussed.
[1]N. A. Rockets, A Teacher's Guide, 1999.
[2]Frank H. Winter, Michael J. Neufeld, and Kerrie Dougherty, Was the rocket invented or accidentally discovered? Some new observations on its origins. Acta Astronautica, 77:131–137, August 2012.
[3]A. C. Tribble, "A Tribble’s guide to Space," Princeton, 2000.
[4]J. Winchester, “Space Missions,” Amber, 2006.
[5]George P. Sutton, Oscar Biblarz, Rocket Propulsion Elements, 2001.
[6]Roger R. Bate, Donald D. Mueller, Jerry E. White, Fundamentals of Astrodynamics, 1971.
[7]Willi Hallmann,Klaus Wittmann,Wilfried Ley, “Handbook of Space Technology,” Wiley, 2009.
[8]W. E. Wiesel, “Spaceflight Dynamics,” Aphelion, third edition edition, 2010.
[9]E. Civek-Coskun, Kemal Ozgoren, “A generalized staging optimization program for space launch,” Recent Advances in Space Technologies,pages 857–862, 2013.
[10]Reza Jamilnia,Abolghasem Naghash, “Simultaneous optimization of staging and trajectory of aunch vehicles using two different approaches,” Aerospace Science and Technology,Page 85–92, 2012.
[11]Malina, Frank J.,Summerfield, M., “The Problem of Escape from the Earth by Rocket,” Journal of the Aeronautical Sciences, 1947.
[12]M. Vertregt, “A method of calculating the mass ratio of step rockets,” Journal of the British Interplanetary Society, 1956.
[13]M. Goldsmith, “On the optimization of two stage rockets,” Jet Propulsion,Page 415-416, 1957.
[14]L. Weisbord, “A generalized optimization procedure for n-staged missiles,” Jet Propulsion,Page 164-167, 1958.
[15]M. Subotowicz, “The optimization of the n-step rocket with different construction,” Jet Propulsion,Page 460-463, 1958.
[16]Hall, H. H. ,Zambelli, E. D., “On the optimization of multistage rockets,” Jet Propulsion,Page 463-465.
[17]E. R. Cobb, “Optimum staging technique to maximize payload total energy,” ARS Journal,Page 342-344.
[18]A. Tewari, Atmospheric and space flight dynamics: Modeling and simulation with Matlab and Simulink., Boston, 2007.
[19]Murray, Carl D; Dermott, Stanley F, “Solar System Dynamics,” Cambridge University Press, Cambridge, GB, 1999.
[20]E. G. Farewik, “Numerical approach of a hybrid rocket,” 2017.
[21]SpaceX, FALCON USER'S GUIDE, USA, Sep,2021.
[22]SpaceX, "Vented interstage and heat shield installed atop Booster 9," https://twitter.com/SpaceX/status/1692610662604702138, 19 8 2023. [Online].
[23]M. J. Turner, Rocket and spacecraft propulsion: Principles, practice and new developments (3rd ed.)., Germany: Springer-Praxis, 2009.
[24]Ley, W., Wittmann, K., Hallmann, W., In Handbook of space technology. Chapter 3: Space tansportation systems., UK: John Wiley & Sons., 2009.
[25]H. M. Fischer, Trajectories and orbital mechanics: Ascent of launchers, orbits, 2005.
[26]D. N. Burghes, Optimum staging of multistage rockets. International Journal of Mathematical Education in Science and Technology., 1974.
[27]Loftus, J. P., Teixeira, C., Space mission analysis and design (3rd ed.), New York, 1999.
[28]胡雋, 混合運載火箭的入軌模擬, Tainan, Taiwan, R.O.C.: National Cheng Kung University, 2024.01.
[29]S. Simakov, Introduction to MATLAB Graphical User, Maritime Operations Division Defence Science and Technology Organisation, 2005.
[30]"Falcon 9 Full Thrust," Falcon 9 Full Thrust, [Online]. Available: https://en.wikipedia.org/wiki/Falcon_9_Full_Thrust#cite_ref-spacex-falcon9_4-2.
[31]"Falcon 9 velocity/altitude values from webcast," Space Opera, 22 08 2016. [Online]. Available: https://forum.nasaspaceflight.com/index.php?topic=40983.0.
[32]"Launcher SL1," HyImpulse Technologies GmbH, [Online]. Available: https://www.b14643.de/Spacerockets_3/HyImpulse/Description/Frame.htm.
[33]"HyImpulse SL1 rocket," European Space Agency, 30 10 2020. [Online]. Available: https://www.esa.int/ESA_Multimedia/Images/2023/12/HyImpulse_SL1_rocket.
[34]"Epsilon Launch Vehicle User's Manual," JAXA, [Online]. Available: https://global.jaxa.jp/projects/rockets/epsilon/pdf/EpsilonUsersManual_e.pdf.
[35] “Vega-C,” European Space Agency, [Online]. Available: https://www.esa.int/Enabling_Support/Space_Transportation/Launch_vehicles/Vega-C.
[36]N. Brügge, "CZ-11 Vehicle Design," [Online]. Available: https://www.b14643.de/Spacerockets_1/China/CZ-11/Description/Frame.htm.
[37]G. D. Krebs, "Kuaizhou-11 (KZ-11)," Gunter's Space Page, [Online]. Available: https://space.skyrocket.de/doc_lau/kuaizhou-11.htm.
[38]Deborah Todd,Joseph A. Angelo, “A to Z of Scientists in Space and Astronomy,” New York, 2005.
[39]H. D. Curtis, “Orbital mechanics for engineering students.,” Burlington, 2005.