簡易檢索 / 詳目顯示

研究生: 安列望
Auliawan, Andi
論文名稱: 有機黏土於生物可降解性三成份高分子摻合之奈米複材研究
Biodegradable ternary blend comprising poly(L-lactic acid), poly(methyl methacrylate), poly(ethylene oxide) as matrix for organoclays nanocomposites
指導教授: 吳逸謨
Woo, E. M.
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 106
中文關鍵詞: 高分子三成份混掺奈米複合物有機黏土結晶動力學熱降解酵素降解
外文關鍵詞: ternary polymer blend, nanocomposites, organoclays, crystallization kinetics, thermal degradation, enzymatic degradation
相關次數: 點閱:140下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將對聚乳酸(PLLA)、聚甲基丙烯酸甲酯(PMMA)和聚氧化乙烯(PEO)三成份摻合系統進行探討。由過去文獻可知,兩成份系統PLLA/ PEO及PLLA/ PMMA摻合體分別為部分相容及具有上臨界溶液溫度(UCST)之摻合系統。在三成份摻合系統中,擇以特定組成下去探討其相容性,可知當PLLA含量高於60 wt%以上,呈現單一玻璃轉移溫度(Tg),且Tg的位移跟PMMA、PEO各別與PLLA的相容程度及作用力大小有關。三成份系統中,可藉由PEO及PMMA的導入,分別造成冷結晶溫 度的降低及PMMA結晶的抑制,可知材料塑化及結晶延遲的程度。因此,摻合體的結晶度明顯受到PMMA和PEO含量的影響。在結晶型態上,PMMA的加入會使得PLLA/ PEO系統球晶型態由ringless 變成ring banded,且隨著PMMA的增加,其環狀消光環之環距會隨之遞減。而提高PEO含量或結晶溫度,則會抑制ring banded 球晶的形成。
    三成份系統導入organically-modified vermiculite和Cloisite10A兩種不同的黏土(clay),以探討clay對摻合體之結晶動力學及生物可分解性。針對結晶動力學部份,分別利用Avrami理論探討摻合體之恆溫結晶,以及利用modified Avrami,、Ozawa和 Mo 理論探討摻合體之非恆溫結晶。綜合以上的結果可知,此兩種clay的加入皆會對摻合體的成核機制和結晶動力造成改變,其中在結晶動力方面,當OVMT含量的增加,會抑制摻合體的結晶能力,而Cloisite10A含量的增加則可先增強結晶能力而後抑制。有機黏土的導入,可延遲酵素降解速率及提高熱穩定性,其中以OVMT對酵素降解速率的抑制效果較佳,而於剛開始的降解過程中,以Cloisite10A較能提高摻合體的熱穩定

    Blending of ternary polymer blend comprising poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide) was investigated. Their binary blend is known to result partial miscible blend (PLLA/PEO) and UCST system (PLLA/PMMA). In this system, the miscibility is found to take place at certain composition. When PLLA content is 60 wt.% or above, the single Tg is found with variation of PMMA and PEO composition. The shift of Tg is strongly dependent of the interaction between PMMA and PEO toward PLLA. The plasticization as well as retardation on thermal and crystallization behavior is observed simultaneously. While PEO reduces the cold crystallization temperature, PMMA retards the extent of crystallization. The degree of crystallinity is strongly dependent of PMMA and PEO content. The addition of PMMA into PLLA/PEO changes the morphology from ringless to ring banded spherulites. The higher PMMA content leads to the decrease of ring band spacing. While the increase of PEO and Tc inhibits the formation of ring banded spherulite.
    Two different clays, organically-modified vermiculite and Cloisite10A®, were added to the ternary polymer blend. The addition of clays greatly alters the nucleation mechanism as well as crystallization kinetics. The isothermal crystallization analysis was carried by Avrami method, while that of non-isothermal crystallization was carried by modified Avrami, Ozawa, and Mo method. The value of n for neat polymer in isothermal crystallization is around 2.6, while for its nanocomposites, the value around 3.6 is obtained. Nucleation mechanism changes from 3D thermal circular lamellar to thermal truncated sphere. The two clays have different effect upon increasing loading. OVMT directly retards the crystallization kinetics as its loading is increased, while Cloisite10A® enhances the crystallization and then retards it at higher loading.
    The incorporation of organoclays also improves the enzymatic and thermal stability. The retardation effect on enzymatic degradation is more pronounced on samples with OVMT than those of Cloisite10A®. The difference in enzymatic degradation rate is attributed to the difference of modifier used to modify the clays. During thermal degradation process, Closite10A® stabilizes the polymers blend in the initial process more than OVMT does.

    CONTENTS ABSTRACT ( Chinese and English) I ACKNOWLEDGEMENT III CONTENTS V LIST OF FIGURES VII LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 THEORETICAL BACKGROUND 3 2.1 Polymer Blends 3 2.1.1 Thermodynamics for Miscibility in Binary and Ternary Polymer Blends 3 2.1.2 Thermal Transition Behavior 5 2.2 Crystallization Kinetics 6 2.2.1 Avrami Theory 6 2.2.2 Ozawa Theory 8 2.3 Polymer Nanocomposites 8 2.3.1 Layered Silicates 8 CHAPTER 3 EXPERIMENTAL SECTION 11 3.1 Materials 11 3.2 Vermiculite Modification 12 3.3 Preparation of Polymer Nanocomposites 13 3.4 Enzymatic Degradation 13 3.5 Apparatus 13 CHAPTER 4 RESULTS AND DISCUSSION 16 4.1 Phase Behavior and Crystal Morphology of Ternary Polymer Blend 16 4.2 Polymer Nanocomposites of poly(L-lactic acid), poly(methyl methacrylate), and poly(ethylene oxide) with organically Modified Clays 32 4.3 Crystallization Kinetics of Ternary Polymer Blend with Organoclays 44 4.4 Enzymatic and thermal Degradation of Polymer Nanocomposites with OVMT and Clo10A 87 CHAPTER 5 CONCLUSIONS 98 REFERENCE 100 CURRICULUM VITAE 106

    1. Bordes, P.; Pollet, E.; Averous, L. Prog. Polym. Sci. 2009, 34, 125-155.
    2. Zhang, J.; Xu, J.; Wang, H.; Jin, W.; Li, J. Mat. Sci. Eng. C 2009, 29, 889-893.
    3. Sangwan, P.; Way, C.; Wu, D. Y. Macromol. Biosci. 2009, 9, 677-686.
    4. Sawyer, D. J. Macromol. Symp. 2003, 201, 271-281.
    5. Drumright, R. E.; Gruber, P. R.; Henton, D. E. Adv. Mater. 2000, 12, 1841-1846.
    6. Dorgan, J. R.; Lehermeier, H. J.; Palade, L. I.; Cicero, J. Macromol. Symp 2001, 175, 55-66.
    7. Ikada, Y.; Tsuji, H. Macromol. Rapid. Commun. 2000, 21, 117.
    8. Garlotta, D. J. Polym. Environ. 2002, 9, 63-84.
    9. Fukushima, K.; Tabuani, D.; Camino, G. Mat. Sci. Eng. C. 2009, 29, 1433-1441.
    10. Ronneberger, B.; Kao, W. J.; Anderson, J. M.; Kissel, T. J. Biomed. Mater. Res. 1996, 30, 31-40.
    11. Janorkar, A.V.; Metters, A.T.; Hirt, D. E. Macromolecules 2004, 37, 9151-9159.
    12. Agari, Y.; Sakai, K.; Kano, Y.; Nomura, R. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 2972-2981.
    13. Martin, O.; Averous, L. Polymer 2001, 42, 6209.
    14. Ljungberg, N.; Wesslen, B. J. Appl. Polym. Sci. 2002, 86, 1227.
    15. Jia, Z.; Zhang, K.; Tan, J.; Han, C.; Dong, L.; Yang, Y. J. Appl. Polym. Sci. 2000, 111, 1530-1539.
    16. Li, C.; Kong, Q.; Fan, Q.; Xia, Y. Mat. Lett. 2005, 59, 773-778.
    17. Lu, J.; Qiu, Z.; Yang, W. Macromol. Mater. Eng. 2008, 293, 930-938.
    18. Sari, A.; Alkan, C.; Karaipekli, A.; Uzun, O. J. Appl. Polym. Sci. 2010, 116, 929-933.
    19. Im, H.; Kim, H.; Kim, J. Mater. Trans. 2009, 50, 1730-1736.
    20. Moussaif, N.; Groeninckx, G. Polymer 2003, 44, 7899-7906.
    21. Li, S. H.; Woo, E. M. J. Polym. Sci. part. B: Polym. Phys. 2008, 46, 2355-2369.
    22. Lee, J. S.; Prabu, A. A.; Kim, K. J. Macromolecules 2009, 42, 5660-5669.
    23. Tjong, S.C. Mat. Sci. Eng. R. 2006, 53, p.73-197.
    24. Xu, J.; Li, R.K.Y.; Xu, Y.; Li, L.; Meng,Y.Z. Eur. Polym. J. 2005, 41, 881-888.
    25. Flory, P. J. Principles of Polymer Chemistry. Cornell University Press: Ithaca, NY, 1953.
    26. Scott, R.L. J. Chem. Phys. 1949, 17, 279.
    27. Tompa, H. Trans. Faraday Soc. 1949, 45, 1140.
    28. Robard, A.; Patterson, D. Macromolecules 1977, 10, 1021.
    29. Christiansen, W. H.; Paul, D. R.; Barlow, J. W. J. Appl. Polym. Sci. 1987, 34, 537.
    30. Ameduri, B.; Prud’homme, R. E. Polymer 1988, 29, 1052.
    31. Koklas, S. N.; Sotiropoulou, D. D.; Kallitsis, J. K.; Kalfoglou, N. K. Polymer 1991, 32, 66.
    32. Landry, C. J. T. Yang, H.; Machell, J. S. Polymer 1991, 32, 44.
    33. Quian, C.; Mumby, S. J.; Eichinger, B. E. Macromolecules 1991, 24, 1655.
    34. Su, A. C.; Fried, J. R. Polym. Eng. Sci. 1987, 27, 1657.
    35. Fox, T. G. J. Appl. Bull. Am. Phys. Soc. 1956, 1, 123.
    36. Gordon, M.; Taylor, J. S. J. Appl. Chem. 1952, 2, 493.
    37. Kwei, T. K. J. Polym. Sci. Polym. Lett. Ed. 1984, 22, 307.
    38. Avrami, M. J. Chem. Phys. 1941, 9, 177.
    39. Avrami, M. J. Chem. Phys. 1940, 8, 212.
    40. Avrami, M. J. Chem. Phys. 1939, 7, 1103.
    41. Sperling, L. H. “Introduction to Physical Polymer Science” Wiley Interscience 1932, New York.
    42. Ozawa, T. Polymer 1971, 12, 150.
    43. Cebe, P.; Hong, S.D. Polymer 1986, 27, 1183.
    44. Xu, J.T; Zhao, Y. Q.; Wang, Q.; Fan, Z. Q. Polymer 2005, 46, 11978-11985.
    45. Tjong, S.C; Meng, Y. Z.; Xu, J. J. Polym. Sci. part. B: Polym. Phys. 2001, 40, 2860-2870.
    46. Zhang, K.; Xu, J; Wang, K. Y.; Cheng, L. Wang, J.; Liu, B. Polym. Degrad. Stab. 2009, 94, 2121-2127.
    47. Zhang, Y.; Han, W.; Wu, C. F. J. Macromol. Sci. part B 2009, 48, 967-978.
    48. Mittal, V. J. Compos. Mat. 2008, 42, 2829-2839.
    49. Ray, S.S.; Okamoto, K.; Okamoto, M. Macromolecules 2003, 36, 2355.
    50. Zhang, G.; Zhang, J.; Wang, S.; Shen, D. J. Polym. Sci. part B: Polym. Phys. 2003, 41, 23-30.
    51. Wu, L.; Hou, H. J. Appl. Polym. Sci. 2010, 115, 702-708.
    52. Shieh, Y. T.; Liu, G. L. J. Polym. Sci. Part B: Polym. Phys. 2007, 45, 466-474.
    53. Yu, X.; Wei, C.; Ke, L.; Hu, Y.; Xie, X.; Wu, H. J. Haz. Mat. 2010, 180, 499-507.
    54. Wang, W; Zhang, J; Wang, A. Appl. Clay Sci. 2009, 46, 21-26.
    55. Zhang, J. H.; Zhuang, W.; Zhang, Q.; Liu, B.; Wang, W. Polym. Compos. 2007, 28, 545-550.
    56. Lin, J.; Tang, Q.; Wu, J.; Sun, H. Sci. Technol. Adv. Mater. 2008, 9, 1-6.
    57. Gomes, E. V. D.; Visconte, L. L. Y.; Pachecho, E. B. A. V. J. Therm. Anal. Calorim. 2009, 97, 571-575.
    58. Muiambo, H. F.; Focke, W. W.; Atanasova, M.; Westhuizen, I.; Tiedt, L. R. Appl. Clay Sci. 2010, 50, 51-57.
    59. Tjong, S. C.; Meng, Y. Z. J. Polym. Sci. part B: Polym. Phys. 2003, 41, 2332-2341.
    60. Wang, C. F.; Gu, H. Z.; Zhou, F. Adv. Mater. Res. 2011, 177, 602-605.
    61. Choudhury, A.; Bhowmick, A. K.; Ong, C. Polymer 2009, 50, 201-210.
    62. Xidas, P. I.; Triantatyllidis, K. S. Eur. Polym. J. 2010, 46, 404-417.
    63. Perreira, I. M.; Carvalho, S.; Pereira, M. M.; Leite, M. F.; Orefice, R. L. J. Appl. Polym. Sci. 2009, 114, 254-263.
    64. Zhao, Y. Q.; Cheung, H. Y.; Lau, K. T.; Xu, C. L.; Zhao, D. D.; Li, H. L. Polym. Deg. Stab. 2010, 95, 1978-1987.
    65. Tjong, S. C.; Bao, S. P. J. Polym. Phys. part B: Polym. Phys. 2005, 43, 253-263.
    66. Xiao, H.; Liu, F.; Jiang, T.; Yeh, J. T. J. Appl. Polym. Sci. 2010, 117, 2980-2992.
    67. Papageorgiou, G. Z.; Achilias, D.S.; Bikiaris, D. N. Macromol. Chem. Phys. 2007, 208, 1250-1264.
    68. Wunderlich, B. Macromolecular Physics 1976, 2, 147.
    69. Hong, Z. K.; Zhang, P. B.; He, C. L.; Qiu, X. Y.; Liu, A.; Chen, L.; Chen, X. S.; Jing, X. B. Biomaterials 2005, 26, 6296.
    70. Jacquel, N.; Tajima, K.; Nakamura, N.; Miyagawa, T.; Pan, P.; Inoue, Y. J. Appl. Polym. Sci. 2009, 114, 1287-1294.
    71. Li, X.; Yin, J.; Yu, Z.; Yan, S.; Lu, X.; Wang, Y.; Cao, B.; Chen, X. Polym. Compos. 2009, 30, 1338-1344.
    72. Qin, J.; Guo, S.; Li, Z. J. Appl. Polym. Sci. 2008, 109, 1515-1523.
    73. Lu, X. F.; Hay, J. N. Polymer 2001, 42, 9423-9431.
    74. Xue, M. L.; Sheng, J.; Yu, Y. L.; Chuah, H. H. Eur. Polym. J. 2004, 40, 811-818.
    75. Gopakumar, T. G.; Lee, J. A.; Kontopoulou, M.; Parent, J. S. Polymer 2002, 43, 5483-5491.
    76. Xu, W.; Ge, M.; He, P. J. Appl. Polym. Sci. 2001, 82, 2281.
    77. Xu, W.; Ge, M.; He, P. J. Polym. Sci. Part. B: Polym. Phys. 2002, 40, 408.
    78. Supaphol, P. J. Appl. Polym. Sci. 2000, 78, 338.
    79. Joshi, M.; Butola, B. S. Polymer 2004, 45; 4953-4968.
    80. Mitchell, C. A.; Krishnamoorti, R. Polymer 2005, 46, 8796-8804.
    81. Jiang, C.; Wang, D.; Zhang, M.; Li, P.; Zhao, S. Eur. Polym. J. 2010, 46, 2206-2215.
    82. Weng, W.; Chen, G.; Wu, D. Polymer 2003, 44, 8119-8132.
    83. Liu, T.; Mo, Z.; Wang, S.; Zhang, H. Polym. Eng. Sci. 1997, 37, 568-575.
    84. Liu, M.; Zhao, Q.; Wang, Y.; Zhang, C.; Mo, Z. Cao, S. Polymer 2003, 44, 2537-2545.
    85. Liu, X.; Wu, Q. Eur. Polym. J. 2002, 38, 1383-1389.
    86. Run, M.; Wang, Y.; Yao, C.; Gao, J. Thermochim. Acta 2006, 447, 13-21.
    87. Reeve, M. S.; McCarthy, S. P.; Downey, M. J.; Gross, R. A. Macromolecules 1994, 27, 825-831.
    88. Tsuji, H.; Miyauchi, S. Polym. Degrad. Stabil. 2001, 71, 415-424.
    89. Tsuji, H.; Kidokoro, Y.; Mochizuki, M. Macromol. Mater. Eng. 2006, 291, 1245-1254.
    90. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A. Macromolecules 1996, 29, 7356.
    91. Iwata, T.; Doi, Y. Macromolecules 1998, 31, 2461.
    92. Li, S. M.; Liu, L. J.; Garreau, H.; Vert, M. Biomacromolecules 2003, 4, 372-377.
    93. Zhao, Z. X.; Yang, L.; Hu, Y. F.; He, Y.; Wei, J.; Li, S. M. Polym. Degrad. Stabil. 2007, 92, 1769-1777.
    94. Ohkita, T.; Lee, S. H. J. Appl. Polym. Sci. 2006, 100, 3009-3017.
    95. Fukuda, N.; Tsuji, H.; Ohnishi, Y. Polym. Degrad. Stabil. 2002, 78, 119-127.
    96. Fukuda, N.; Tsuji, H. J. Appl. Polym. Sci. 2005, 96, 190-199.
    97. Shih, Y. F.; Wu, T. M. J. Polym. Res. 2009, 16, 109-115.
    98. Wen, X.; Zhang, K.; Wang, Y.; Han, L.; Han, C.; Zhang, H.; Chen, S.; Dong, L. Polym. Int. 2011, 60, 202-210.
    99. Zhou, H.; Yi, C.; Wang, L.; Liu, H.; Xu, W. J. Therm. Anal. Calorim. 2009, 97, 929-935.
    100. Liu, X.; Khor, S.; Petinakis, E.; Yu, L. Thermochim. Acta 2010, 509, 147-151.
    101. Yuzay, I. E.; Auras, R.; Soto-Valdez, H.; Selke, S. Polym. Degrad. Stabil. 2010, 95, 1769-1777.
    102. Liu, X.; Zou, Y.; Li, W.; Cao, G.; Chen, W. Polym. Degrad. Stabil. 2006, 91, 3259-3265.
    103. Kang, B. S.; Kim, S. G.; Kim, J. S. J. Anal. Appl. Pyrolysis 2008, 81, 7-13.
    104. Laachachi, A.; Ruch, D.; Addiego, F.; Ferriol, M.; Cochez, M.; Cuezta, J.-M. L. Polym. Degrad. Stabil. 2009, 94, 670-678.

    下載圖示 校內:2013-08-11公開
    校外:2013-08-11公開
    QR CODE