| 研究生: |
唐高晴 Tang, Kao-Ching |
|---|---|
| 論文名稱: |
河寬及水流功率影響海底辮狀河道之實驗研究 Experimental Study of Submarine Braided Channels in response to Channel Width and Stream Power |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 100 |
| 中文關鍵詞: | 海底辮狀河道 、異重流 、河寬 、辮狀指數 、數位影像處理 、無因次參數分析 |
| 外文關鍵詞: | physical experiment, density current, braiding index, submarine braided channel, di-mensionless stream power. |
| 相關次數: | 點閱:133 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
海底辮狀河道常出現在海底沖積扇及深海平原,主要成因是濁流通過海底峽谷後,夾帶泥砂堆積形成複數砂洲及海底河道。過去對於辮狀河道的機制多來自陸上之辮狀河川,僅有極少數仔細探究海底辮狀河道之文獻,並提出流量及坡度組合會強烈影響其形貌。因此本研究欲透過小尺度之物理模型實驗,探討河寬及水流功率對影海底辮狀河道之影響。本研究之實驗使用飽和鹽水作為異重流,混合樹脂砂後模擬濁流,使海底辮狀河道自行產生不受限制之河道寬度。透過每五秒一次的高解析度間隔攝影,詳實紀錄海底地形隨時間之演化過程,並使用雷射切頁掃描技術重建各階段之數值高程模型。
以異重流流量、供砂量及底床坡度為操縱變因,成功沖出海下辮狀河到的形貌。實驗中定性觀察的部分,可看到異重流夾帶泥砂於河道內運移,產生加積作用並出現許多河中砂洲,砂洲前後分別有分流及匯流的情況,也可看到異重流自由發展河寬的過程,這些形貌都與陸上辮狀河道之流動特色相仿;定量分析顯示,辮狀指數於不同河寬下,仍能適當的反應水下河道之辮狀程度。流量較大及坡度較陡的實驗,會造成河道內擁有更均勻的堆積。研究中各項辮狀指數與無因次水流功率,相較於前人水上或水下的實驗呈低相關性,推測是因為並未考慮起始河寬及供砂量之影響,未來應可加入考慮此兩項因素。
Submarine braided channels produced by turbidity currents have multiple bars and channels, similarly to the morphology of subaerial braided rivers. How-ever, we still have limited understanding for the mechanism of submarine braided channels. In this study, we used physical experiment to study the effects of limited channel width and stream power on the submarine braided channels. For the ex-periments, plastic sand was used to simulate deep-sea sediment, and saturated brine was used as the dense underflow. Our results show that total braiding inten-sity (BIT) and active braiding intensity (BIA) in all runs approach to a stable value and reflect the degree of braiding. Furthermore, the ratio of braiding intensity (BIR) produced in this study are higher than that of Lai et al., [2017]. Finally, we find that the braiding intensities in our study have low correlation with dimen-sionless power. The possible reason may due to the absence of considering the effects of sediment discharge and initial channel width.
參考文獻
1. Ashmore, P. (1991), How Do Gravel-Bed Rivers Braid, 326-341.
2. Bertoldi, W., L. Zanoni, and M. Tubino (2009), Planform dynamics of braided streams, Earth Surface Processes and Landforms, 34(4), 547-557.
3. Bertoldi, W., P. Ashmore, and M. Tubino (2009), A method for estimating the mean bed load flux in braided rivers, Geomorphology, 103(3), 330-340.
4. Douglas L. Inman, C. E. N., and Reinhard E. Flick (1976), Current in submarine canyons (an air-sea-land interaction), 275-310.
5. Egozi, R., and P. Ashmore (2008), Defining and measuring braiding in-tensity, Earth Surface Processes and Landforms, 33(14), 2121-2138.
6. Egozi, R., and P. Ashmore (2009), Experimental analysis of braided channel pattern response to increased discharge, Journal of Geophysical Research, 15.
7. Ferguson, R. I., and M. Church (2004), A Simple Universal Equation for Grain Settling Velocity, Journal of sedimentary research, 74(6), 933-937.
8. Foreman, B. Z., S. Y. J. Lai, Y. Komatsu, and C. Paola (2015), Braiding of submarine channels controlled by aspect ratio similar to rivers, Nature Geoscience, 8(9), 700-703.
9. Hein, F. J., and R. G. Walker (1982), The Cambro‐Ordovician Cap Enragé Formation, Queébec, Canada: conglomeratic deposits of a braided submarine channel with terraces, Sedimentology, 29, 309-352.
10. Hong, L. B., and T. R. H. Davies (1979), A study of stream braiding, Geological Society of America Bulletin, 90, 1839-1859.
11. Hughes Clarke, J. E. (2016), First wide-angle view of channelized tur-bidity currents links migrating cyclic steps to flow characteristics, Nature communications, 7, 13.
12. Lai, S. Y. J., T. P. Gerber, and D. Amblas (2016), An experimental ap-proach to submarine canyon evolution, Geophysical Research Letters, 43(6), 2741-2747.
13. Lai, S. Y. J., J.-L. Grimaud, Samuel S. C. Hung, B. Z. Foreman, C. Paola, and A. B. Limaye (2017), Stream power controls the braiding intensity of submarine channels similarly to rivers, Geophysical Research Letters, 1-9.
14. Parker, G. (1976), On the cause and characteristic scales of meandering and braiding in rivers, Journal of Fluid Mechanics, 76(03): 457-480.
15. Peakall, J., I. A. Kane, D. G. Masson, G. Keevil, W. McCaffrey, and R. Corney (2012), Global (latitudinal) variation in submarine channel sinu-osity, Geology, 40(1), 11-14.
16. R.H. Belderson, N.H. Kenyon, A.H. Stride* and C.D. Pelton (1984), A 'braided' distributary system on the Orinoco deep-sea fan, Marine Geology, 195-206.
17. Reinhard Hesse, I. K., Saeed Khodabakhsh,, W. F. R. David J. W. Piper, and a. N. S. Group (2001), Sandy submarine braid plains Potential deep-water, AAPG, 1499-1521.
18. Sequeiros, O. E. (2012), Estimating turbidity current conditions from channel morphology: A Froude number approach, Journal of Geo-physical Research: Oceans, 117(C4), 19.
19. Shu-Kun Hsu, Jackie Kuo, Chung-Liang Lo, Ching-Hui Tsai, Wen-Bin Doo, and a. J.-C. S. Chia-Yen Ku1 (2008), Turbidity Currents, Submarine Landslides and the 2006 Pingtung Earthquake off SW Taiwan.
20. Straub, K. M., D. Mohrig, J. Brandon McElroyButtles, J. Buttles, and C. Pirmez (2008), Interactions between turbidity currents and topography in aggrading sinuous submarine channels: A laboratory study, Geological Society of America Bulletin, 120(3-4), 368-385.
21. Talling, P. J. (2013), Hybrid submarine flows comprising turbidity current and cohesive debris flow: Deposits, theoretical and experimental anal-yses, and generalized models, Geosphere, 9(3), 460-488.
22. Talling, P. J., et al. (2015), Key Future Directions For Research On Tur-bidity Currents and Their Deposits, Journal of Sedimentary Research, 85(2), 153-169.
23. Wynn, R. B., B. T. Cronin, and J. Peakall (2007), Sinuous deep-water channels: Genesis, geometry and architecture, Marine and Petroleum Geology, 24(6-9), 341-387.
24. 洪世哲 (2015), 以實驗方法探究海下受異重流影響之辮狀河道