簡易檢索 / 詳目顯示

研究生: 王相安
Wang, Hsiang-an
論文名稱: 以控制性血管新生因子釋放產生治療性血管新生
The Controlled Delivery of Angiogenesis Factors for Therapeutic Angiogenesis
指導教授: 謝清河
Hsieh, C.H. Patrick
湯銘哲
Tang, Ming-Jer
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 40
中文關鍵詞: 控制性釋放心肌梗塞凝血脢調節素血管內皮生長因子血管新生
外文關鍵詞: Myocardial infarction, Controlled delivery, VEGF, Thrombomodulin, Neovascularizarion
相關次數: 點閱:105下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鬱血性心衰竭是已開發國家排名第一的死因。造成心衰竭最主要的病因是冠狀動脈阻塞所導致的心肌壞死。因此,增進心肌血管新生的治療可能可以提供有效的治療方法以避免心衰竭的產生。
    血管新生(Neovascularization)是一個十分複雜的生理過程。血管內皮生長因子(Vascular Endothelial Growth Factor, VEGF)在血管新生的啟動與初始過程中扮演必要的角色。然而,直接注射VEGF蛋白或是攜帶有VEGF基因載體進入心臟的臨床試驗都沒有能夠提供病患助益,可能是因為VEGF過量或是未能達成控制性緩慢釋放所致。目前已知有效的血管新生需要非常嚴密的控制微環境中的VEGF表現,VEGF含量太多或太少均無效。此外,凝血脢調節素(Thrombomodulin, TM)第二與第三結構域(TM Domain 2 and 3, TMD23)也已被證明可能俱有血管新生的效果。因此,我提出一個假設,以自組裝胜奈米纖維 (Peptide Nanofibers, NF)的控制性心肌內VEGF與TMD23緩慢釋放可以在大鼠心肌梗塞模式中促進血管新生,並進而改善心臟功能。
    我以雄性200-250克重的Sprague-Dawley大鼠進行心肌梗塞的動物模式,將其冠狀動脈左前降枝進行永久性結紮以引發心肌壞死,接著馬上在壞死心肌與其周邊注射總共100ul的NF與其所攜帶不同劑量的VEGF或 TMD23,再利用心臟超音波在手術後第一天與第二十一天進行左心室收縮分率(Ejection Fraction, EF%)的測定。我的結果顯示EF%在只有施打NF組在術後第二十一天有明顯的改善。但是,VEGF的投遞,不管是否透過奈米纖維,都無助於心臟功能。很驚訝的是,心臟功能在TMD23劑量100或1000 ng/ml都有明顯的改善,TMD23劑量10 ng/ml則無助於心臟功能。有趣的是,同時施打NF 與TMD23並不能產生更大的效果。利用微血管染色密度分析,我也發現TMD23劑量100與1000 ng/ml都可以明顯增加心肌梗塞邊緣的血管密度。這些結果顯示,胜奈米纖維與TMD23心肌內注射可能有助於心肌梗塞後心臟的重塑(Remodeling)與重建(Repair)。本研究未來的計畫將著重在探討上述兩者對心臟助益的背後機制為何,同時探討這樣的治療方法是否在大動物的心肌梗塞模式也能被證明俱有療效。

    Congestive heart failure is the leading cause of death in developed countries. The predominant cause of heart failure is myocardial loss due to coronary artery disease. Therefore, therapies improving myocardial neovascularization may provide promising approaches to prevent heart failure.
    Vascular endothelial growth factor (VEGF) plays an essential role in controlling neovascularization program. However, until recently have clinical trails using direct intramyocardial injection of human VEGF protein (hrVEGF165) or vectors such as plasmids carrying VEGF gene transfer failed to prove benefits for patients. This is possibly due to an uncontrolled release or an overdose of VEGF by these approaches, given that for effective neovascularization the expression of VEGF needs to be tightly regulated in the microenvironments. Besides, thrombomodulin (TM) domain 2 and 3 (TMD23) has been identidied as a novel angiogenic factor with potentials for therapeutic angiogenesis. Accordingly, I hypothesize that controlled intramyocardial delivery of hrVEGF165 or TMD23 using peptide nanofibers for slow release may improve therapeutic neovascularization in a rat model of myocardial infarction (MI).
    MI was created in 200-250g male Sprague-Dawley rats through permanent ligation of left anterior descending coronary artery, immediately followed with intramyocardial injections of 100 μl of hrVEGF165 or TMD23, with or without peptide nanofibers (NF), into the border zones and infarcted areas. The ejection fraction (EF%) was measured at day 1 and day 21 after surgery using echocardiography. The results showed that the ejection fraction was improved in groups with NF injection at day 21. However, there was no significant difference of EF% among VEGF groups with or without nanofibers, no matter in the 10, 100 or 1000 ng/ml dose of VEGF used. Surprisingly, injection of TMD23 alone showed a significant improvement of cardiac functions at the dose of 100 or 1000 ng/ml, but not at the low dose of 10 ng/ml, with or without nanofibers. The capillary density in the peri-infarct areas was also increased by TMD23 injection, with no difference between the groups with or without nanofibers co-injection.
    Together these results suggest that NF itself or TMD23 injection may have beneficial effects on cardiac remodeling or cardiac repair following acute infarction. Future studies will be carried out to explore the mechanisms underlying these cardiac benefits induced by NF or TMD23 injection and to examine if the same cardiac benefits can be observed using large animals such as pigs.

    Abstract in English.......................I Abstract in Chinese................III Acknowledgement............................V Index of Figures and Tables...................VI Chapter 1: Introduction.....................1 1.1 A major need of cardiac regeneration..... 1 1.2 Inadequate regeneration of the myocardium following injury .........................1 1.3 The need for understanding vascularization in cardiac regeneration...................2 1.4 A major physiologic role of endothelium in the myocardium...........................3 1.5 Angiogenesis...................3 1.6 Vasculogenesis...........................5 1.7 Pre-clinical and clinical studies of VEGF165 for therapeutic angiogenesis..................6 1.8 Self-assembling peptide nanofibers for cardiac tissue engineerin....................8 Chapter 2: Material and methods 2.1 Binding capacity of self-assembling peptide nanofibers with VEGF.......................10 2.2 Effect of VEGF and TMD23 on endothelial cell proliferation.....................10 2.3 Experimental myocardial infarction......10 2.4 Echocardiography............11 2.5 Tissue preparation and immunohistochemistry.........12 2.6 Trichrome staining and determination of wall thickness index.......................12 2.7 Stastatics analysis.............. 12 Chapter 3 : Results 3.1 The maximal binding capacity of peptide nanofibers with hrVEGF165...................14 3.2 The optimal dose of hrVEGF165 on human umbilical vein endothelial cell proliferation....14 3.3 The effect of controlled delivery of hrVEGF165 and TMD23 on left ventricular functions......................14 3.4 The effect of controlled delivery of hrVEGF165 and TMD23 on left ventricular remodeling after infarction....15 3.5 The effect of controlled delivery of hrVEGF165 and TMD23 on capillary density in border zone................16 Chapter 4: Discussion.....................27 References ...........................31

    1. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348:2007-2018.
    2.Anversa P. Myocyte death in the pathological heart. Circ Res. 2000;86:121-124.
    3.Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zool. 1974;187:249-253.
    4.Becker RO, Chapin S, Sherry R. Regeneration of the ventricular myocardium in amphibians. Nature. 1974;248:145-147.
    5. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science. 2002;298:2188-2190.
    6. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K, Leri A, Kajstura J, Nadal-Ginard B, Anversa P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763-776.
    7. Deb A, Wang S, Skelding K, Simper D, Caplice N. Bone marrow derived cardiomyocytes are present in adult human heart. J Am Coll Cardiol. 2003;41:544.
    8. Reffelmann T, Kloner RA. Cellular cardiomyoplasty--cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res. 2003;58:358-368.
    9. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F, Heubach JF, Kostin S, Neuhuber WL, Eschenhagen T. Tissue engineering of a differentiated cardiac muscle construct. Circ Res. 2002;90:223-230.
    10. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma S, Edwards NM, Itescu S. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature medicine. 2001;7:430-436.
    11. Itescu S, Kocher AA, Schuster MD. Myocardial neovascularization by adult bone marrow-derived angioblasts: strategies for improvement of cardiomyocyte function. Heart Fail Rev. 2003;8:253-258.
    12. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664-668.
    13. Balsam LB, Wagers AJ, Christensen JL, Kofidis T, Weissman IL, Robbins RC. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature. 2004;428:668-673.
    14. Sakai T, Li RK, Weisel RD, Mickle DA, Kim EJ, Tomita S, Jia ZQ, Yau TM. Autologous heart cell transplantation improves cardiac function after myocardial injury. Ann Thorac Surg. 1999;68:2074-2080
    15. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Natl Acad Sci U S A. 2001;98:10344-10349.
    16. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Bone marrow cells regenerate infarcted myocardium. Nature. 2001;410:701-705.
    17. Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation. 2006;113:1287-1294.
    18. Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet. 2006;367:113-121.
    19. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, Endresen K, Ilebekk A, Mangschau A, Fjeld JG, Smith HJ, Taraldsrud E, Grogaard HK, Bjornerheim R, Brekke M, Muller C, Hopp E, Ragnarsson A, Brinchmann JE, Forfang K. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355:1199-1209.
    20. Schachinger V, Erbs S, Elsasser A, Haberbosch W, Hambrecht R, Holschermann H, Yu J, Corti R, Mathey DG, Hamm CW, Suselbeck T, Assmus B, Tonn T, Dimmeler S, Zeiher AM. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med. 2006;355:1210-1221.
    21. Assmus B, Honold J, Schachinger V, Britten MB, Fischer-Rasokat U, Lehmann R, Teupe C, Pistorius K, Martin H, Abolmaali ND, Tonn T, Dimmeler S, Zeiher AM. Transcoronary transplantation of progenitor cells after myocardial infarction. N Engl J Med. 2006;355:1222-1232.
    22. Abbott JD, Huang Y, Liu D, Hickey R, Krause DS, Giordano FJ. Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation. 2004;110:3300-3305.
    23. Harada M, Qin Y, Takano H, Minamino T, Zou Y, Toko H, Ohtsuka M, Matsuura K, Sano M, Nishi J, Iwanaga K, Akazawa H, Kunieda T, Zhu W, Hasegawa H, Kunisada K, Nagai T, Nakaya H, Yamauchi-Takihara K, Komuro I. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nature medicine. 2005;11:305-311.
    24. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell. 2006;124:175-189.
    25. Hsieh PC, Davis ME, Lisowski LK, Lee RT. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51-66.
    26. Zhang M, Methot D, Poppa V, Fujio Y, Walsh K, Murry CE. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol. 2001;33:907-921.
    27. Reinecke H, Zhang M, Bartosek T, Murry CE. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation. 1999;100:193-202.
    28. Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT. Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation. 2004;110:962-968.
    29. Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003;83:59-115.
    30. Mohan P, Brutsaert DL, Paulus WJ, Sys SU. Myocardial contractile response to nitric oxide and cGMP. Circulation. 1996;93:1223-1229.
    31. Kojda G, Kottenberg K, Noack E. Inhibition of nitric oxide synthase and soluble guanylate cyclase induces cardiodepressive effects in normal rat hearts. Eur J Pharmacol. 1997;334:181-190.
    32. Cotton JM, Kearney MT, MacCarthy PA, Grocott-Mason RM, McClean DR, Heymes C, Richardson PJ, Shah AM. Effects of nitric oxide synthase inhibition on Basal function and the force-frequency relationship in the normal and failing human heart in vivo. Circulation. 2001;104:2318-2323.
    33. Grocott-Mason R, Anning P, Evans H, Lewis MJ, Shah AM. Modulation of left ventricular relaxation in isolated ejecting heart by endogenous nitric oxide. Am J Physiol. 1994;267:H1804-1813.
    34. Grocott-Mason R, Fort S, Lewis MJ, Shah AM. Myocardial relaxant effect of exogenous nitric oxide in isolated ejecting hearts. Am J Physiol. 1994;266:H1699-1705.
    35. Pinsky DJ, Patton S, Mesaros S, Brovkovych V, Kubaszewski E, Grunfeld S, Malinski T. Mechanical transduction of nitric oxide synthesis in the beating heart. Circ Res. 1997;81:372-379.
    36. Mohan P, Brutsaert DL, Sys SU. Myocardial performance is modulated by interaction of cardiac endothelium derived nitric oxide and prostaglandins. Cardiovasc Res. 1995;29:637-640.
    37. Mebazaa A, Mayoux E, Maeda K, Martin LD, Lakatta EG, Robotham JL, Shah AM. Paracrine effects of endocardial endothelial cells on myocyte contraction mediated via endothelin. Am J Physiol. 1993;265:H1841-1846.
    38. Zolk O, Quattek J, Sitzler G, Schrader T, Nickenig G, Schnabel P, Shimada K, Takahashi M, Bohm M. Expression of endothelin-1, endothelin-converting enzyme, and endothelin receptors in chronic heart failure. Circulation. 1999;99:2118-2123.
    39. Luscher TF, Enseleit F, Pacher R, Mitrovic V, Schulze MR, Willenbrock R, Dietz R, Rousson V, Hurlimann D, Philipp S, Notter T, Noll G, Ruschitzka F. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002;106:2666-2672.
    40. Au TL, Collins GA, Harvie CJ, Walker MJ. The actions of prostaglandins I2 and E2 on arrhythmias produced by coronary occlusion in the rat and dog. Prostaglandins. 1979;18:707-720.
    41. Hassanabad ZF, Furman BL, Parratt JR, Aughey E. Coronary endothelial dysfunction increases the severity of ischaemia-induced ventricular arrhythmias in rat isolated perfused hearts. Basic Res Cardiol. 1998;93:241-249.
    42. Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest. 2006;116:237-248.
    43. Bussolino F, Mantovani A, Persico, G.. Molecular mechanisms of blood vessel formation. Trends Biochem Sci. 1997; 22:251-256.
    44. Costa C, Soares R, Schmitt F. Angiogenesis: now and then. APMIS. 2004;112:402-12.
    45. Milkiewicz M, Brown MD, Egginton S, Hudlicka O. Association between shear stress, angiogenesis and VEGF in skeletal muscles in vivo. Microcirculation. 2001; 8:229-241.
    46. Li J, Hampton TG, Morgan JP and Simons M. Stretch-induced VEGF expression in rat heart. J. Clin. Invest. 1997;100: 18-24.
    47. Semenza G. L. HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell. 2001;107:1-3.
    48. Zachary I. VEGF signalling: integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003; 31:1171–1177.
    49. Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 1982;257:7944-7947
    50. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of Human Thrombomodulin Domain as a Novel Angiogenic Factor. Circulation. 2005; 111:1627-36.
    51. Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A. 2002;99:8219-8224.
    52. Lindahl P, Johansson BR, Leveen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277:242-245.
    53. Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C. Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development. 1999;126:3047-3055.
    54. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029-1034.
    55. Carlson TR, Feng Y, Maisonpierre PC, Mrksich M, Morla AO. Direct cell adhesion to the angiopoietins mediated by integrins. J Biol Chem. 2001;276:26516-26525.
    56. Kobayashi H, DeBusk LM, Babichev YO, Dumont DJ, Lin PC. Hepatocyte growth factor mediates angiopoietin-induced smooth muscle cell recruitment. Blood. 2006;108:1260-1266.
    57. Pettersson A, Nagy JA, Brown LF, et al. Heterogeneity of the angiogenic response induced in different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab Invest. 2000;80:99 –115.
    58.Hendel RC, Henry TD, Rocha-Singh K, et al. Effect of intracoronary recombinant human vascular endothelial growth factor on myocardial perfusion: evidence for a dose-dependent effect. Circulation. 2000;101:118–21.
    59. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis—initial clinical results with direct myocardial njection of phVEGF(165) as sole therapy for myocardial ischemia. Circulation. 1998;98:2800–4.
    60. Vale PR, Losordo DW, Milliken CE, et al. Left ventricular electromechanical mapping to assess efficacy of phVEGF(165) gene ransfer for therapeutic angiogenesis in chronic myocardial ischemia. Circulation. 2000;102:965–74.
    61. Sylven C, Sarkar N, Ruck A, et al. Myocardial Doppler tissue velocity improves following myocardial gene therapy with VEGF-A165 plasmid in patients with inoperable angina pectoris. Coron Artery Dis. 2001;12:239–43.
    62. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995;16:1385-1393.
    63.
    Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 2002;20:16-21.
    64. Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A. 1993;90:3334-3338.
    65. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A. 2000;97:6728-6733.
    66. Leon EJ, Verma N, Zhang S, Lauffenburger DA, Kamm RD. Mechanical properties of a self-assembling oligopeptide matrix. J Biomater Sci Polym Ed. 1998;9:297-312.
    67. Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A. 2006;103:8155-8160.
    68.Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ Res. 2005;97:8-15.
    69. Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest. 2006;116:237-248.
    70. Engel FB, Hsieh PC, Lee RT, Keating MT. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. Proc Natl Acad Sci U S A. 2006;103:15546-15551.
    71. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 2004;113:516–527
    72. Ellis-Behnke RG, Liang YX, You SW, Tay DKC, Zhang S, So KF., Schneider GE. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA. 2006; 103: 5054-5059.
    73. Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006;114:2627-35.
    74. Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation. 2005;112:I173-I177.
    75. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995;16:1385-1393.
    76. Holmes TC. Novel peptide-based biomaterial scaffolds for tissue engineering. Trends Biotechnol. 2002;20:16-21.
    77. Zhang S, Holmes T, Lockshin C, Rich A. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci U S A. 1993;90:3334-3338.
    78. Holmes TC, de Lacalle S, Su X, Liu G, Rich A, Zhang S. Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc Natl Acad Sci U S A. 2000;97:6728-6733.
    79. Leon EJ, Verma N, Zhang S, Lauffenburger DA, Kamm RD. Mechanical properties of a self-assembling oligopeptide matrix. J Biomater Sci Polym Ed. 1998;9:297-312.
    80. Davis ME, Hsieh PC, Takahashi T, Song Q, Zhang S, Kamm RD, Grodzinsky AJ, Anversa P, Lee RT. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci U S A. 2006;103:8155-8160.
    81. Davis ME, Hsieh PC, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ Res. 2005;97:8-15.
    82. Zhang S, Holmes TC, DiPersio CM, Hynes RO, Su X, Rich A. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials. 1995;16:1385-1393.
    83. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM. Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J. Clin. Invest. 2004;113:516–527
    84. Ellis-Behnke RG, Liang YX, You SW, Tay DKC, Zhang S, So KF., Schneider GE. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci USA. 2006; 103: 5054-5059.
    85. Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT. Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest. 2006; 116:237-248.
    86. Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006;114:2627-35.
    87. Kofidis T, Lebl DR, Martinez EC, Hoyt G, Tanaka M, Robbins RC. Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation. 2005;112:I173-I177.
    88.Christman KL, Fok HH, Sievers RE, Fang QH, Lee RJ. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 2004;10:403– 409.
    89. Davis ME, Motion JP, Narmoneva DA, Takahashi T, Hakuno D, Kamm RD, Zhang S, Lee RT. Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation. 2005; 111: 442-450
    90. Koutsi A, Papapanagiotou A, Papavassiliou AG. Thrombomodulin: from haemostasis to inflammation and tumourigenesis. Int J Biochem Cell Biol. 2008;40:1669-73
    91. Shi CS, Shi GY, Chang YS, Han HS, Kuo CH, Liu C, Huang HC, Chang YJ, Chen PS, Wu HL. Evidence of Human Thrombomodulin Domain as a Novel Angiogenic Factor. Circulation. 2005; 111:1627-36.
    92. Festoff BW, Ameenuddin S, Santacruz K, Morser J, Suo Z, Arnold PM, Stricker KE, Citron BA. Neuroprotective effects of recombinant thrombomodulin in controlled contusion spinal cord injury implicates thrombin signaling. J Neurotrauma. 2004;21:907-22
    93. Esmon C. Do-all receptor takes on coagulation, inflammation. Nat Med. 2005;11:475-7
    94. Zorio E, Navarro S, Medina P, Estells A, Osa A, Rueda J, Cubillo P, Aznar J, Espaa F. Circulating activated protein C is reduced in young survivors of myocardial infarction and inversely correlates with the severity of coronary lesions. J Thromb Haemost. 2006. 4:1530-6
    95. Jay SM, Saltzman WM. Controlled delivery of VEGF via modulation of alginate microparticle ionic crosslinking. J Control Release. 2008 Nov 8. [Epub ahead of print]

    下載圖示 校內:2014-02-09公開
    校外:2014-02-09公開
    QR CODE