簡易檢索 / 詳目顯示

研究生: 王子恆
Wang, Tzu-Heng
論文名稱: 不同長/短軸長度比橢圓形管在循環彎曲負載下響應與失效之實驗研究
Experimental Study of the Response and Failure of Elliptical Tubes with Different Major/Minor Axis Length Ratios under Cyclic Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 49
中文關鍵詞: SUS304不鏽鋼橢圓形管循環彎曲曲率彎矩短軸變化循環至皺曲圈數
外文關鍵詞: SUS304 stainless steel elliptical tubes, major/minor axis length ratios, cyclic bending, curvature, moment, minor axis variation, number of cycles needed to initiate buckling
相關次數: 點閱:132下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文係實驗探討不同長/短軸長度比橢圓形管在循環彎曲負載下響應與失效,其中所採用橢圓形管材料為SUS304不鏽鋼,而四組不同的長/短軸長度比分別為:1.5、2.0、2.5和3.0,橢圓形管的管壁厚度皆為0.7 mm,並以不同對稱曲率控制進行循環彎曲負載至皺曲失效的實驗,至於彎矩的方向則與長軸方向重疊。根據實驗結果顯示,不論長/短軸長度比,彎矩-曲率的關係會呈現循環硬化後,即形成一穩定的彈塑性迴圈,在相同的控制曲率情況下,隨著長/短軸長度比的增加,彎矩的極值會有些許的下降,但變化不大。接著,本文以短軸變化取代橢圓化,其定義為短軸變化量/原始短軸長。實驗結果顯示,長/短軸長度比為1.5時,短軸變化-曲率關係會隨著循環圈數的增加呈現對稱、增加與棘齒狀的趨勢,但是當長/短軸長度比為2.0以上時,則該關係會隨著循環圈數的增加而呈現對稱、增加與蝴蝶狀的趨勢,且長/短軸長度比越大時,短軸變化就越大。此外,若以雙對數座標表示曲率-循環至皺曲圈數關係,則四組長/短軸長度比可以對應出四條直線。最後,本文將Kyriakides和Shaw[2]所提出的相關經驗公式修改後,來描述不同長/短軸長度比的SUS304不鏽鋼橢圓形管承受循環彎曲負載下的曲率-循環至皺曲圈數關係。經由理論描述與實驗數據的比較結果顯示,本文所提出的經驗公式可合理地描述實驗結果。

    This paper investigates the response and failure of elliptical tubes with different major/minor axis length ratios under cyclic bending. SUS304 stainless steel is used as the material for the elliptical tubes with four major/minor axis length ratios of 1.5, 2.0, 2.5, and 3.0. The wall thickness is 0.7 mm, and cyclic bending loads are applied until buckling failure. The experimental moment-curvature relationships show cyclic hardening and become a stable loop for all major/minor axis length ratios. Increasing major/minor axis length ratio slightly decreases the peak bending moment. This study also explores the minor axis variation-curvature relationships (minor axis variation = change of the length of the minor axis / original length of the minor axis), a symmetrical, ratcheting, and increasing trend with an increase in the number of cycles is found for major/minor axis length ratio = 1.5. However, when the major/minor axis length ratio = 2.0, 2.5, and 3.0, the relationships exhibits a symmetrical, ratcheting, increasing and butterfly-like trend with an increase in the number of cycles, and the minor axis variation increases with a larger major/minor axis length ratio.
    For the curvature-number of cycles needed to initiate buckling relationships, it can be observed that a larger major/minor axis length ratio causes a fewer number of cycles needed to initiate buckling. In addition, four major/minor axis length ratios correspond to four straight line lines for the curvature-number of cycles needed to initiate buckling relationships in double logarithmic coordinates. Finally, this study used theoretical equations to describe the above-mentioned relationships. The theoretical analysis was compared with experimental data, and it was found that both approaches were very close, indicating that the theory could reasonably describe the experimental results.

    摘要 i 英文延伸摘要 ii 致謝 xii 目錄 xiv 表目錄 xvi 圖目錄 xvii 符號說明 xix 第一章 緒論 1 1-1 研究背景 1 1-2 文獻回顧 2 1-3 研究動機與目的 7 第二章 實驗設備 8 2-1 彎管實驗機本體 8 2-2 油壓伺服控制系統 12 2-3 監控系統 19 2-4 檢測儀器 21 第三章 實驗原理與方法 25 3-1 實驗材料與規格 25 3-2 實驗原理與方式 26 3-3 實驗步驟 29 3-4 實驗數據紀錄與整理 30 第四章 實驗結果與理論分析 35 4-1 M-κ關係 35 4-2 Δℓ/ℓmin-κ關係 38 4-3 κ-Nf關係 41 4-4 理論分析 42 第五章 結論 46 參考文獻 48

    [1] P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cyclic bending,” Int. J. Solids Struct., vol. 21, no. 11, pp. 1073–1100, 1985.
    [2] S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic bending,” J. Press. Vessel Technol., vol. 109, no. 2, pp. 169–178, 1987.
    [3] E. Corona and S. Kyriakides, “On the collapse of inelastic tubes under combined bending and pressure,” Int. J. Solids Struct., vol. 24, no. 5, pp. 505–535, 1988.
    [4] E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure,” Thin-Walled Struct., vol. 12, no. 3, pp. 229–263, 1991.
    [5] W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending,” Exp. Mech., vol. 38, no. 2, pp. 99–102, 1998.
    [6] K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending,” Int. J. Solids Struct., vol. 38, no. 14, pp. 2401–2413, 2001.
    [7] K. L. Lee and W. F. Pan, “Pure bending creep of SUS 304 stainless steel tubes,” Steel Compos. Struct., vol. 2, no. 6, pp. 461–474, 2002.
    [8] K. L. Lee, C. M. Hsu and C. Y. Hung, “Endochronic simulation for the response of 1020 carbon steel tubes under symmetric and unsymmetric cyclic bending with or without external pressure,” Steel Compos. Struct., vol. 8, no. 2, pp. 99–114, 2008.
    [9] K. L. Lee, C. Y. Hung and W. F. Pan, “Variation of ovalization for sharp-notched circular tubes under cyclic bending,” J. Mech., vol. 26, no. 3, pp. 403–411, 2010.
    [10] K. H. Chang and W. F. Pan, “Buckling life estimation of circular tubes under cyclic bending,” Int. J. Solids Struct., vol. 46, no. 2, pp. 254–270, 2009.
    [11] K. L. Lee, C. M. Hsu and W. F. Pan, “Viscoplastic collapse of sharp-notched circular tubes under cyclic bending,” Acta Mech. Solida Sinica, vol. 26, no. 6, pp. 629–641, 2013.
    [12] K. L. Lee, C. C. Chung and W. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending,” J. Chinese Inst. Eng., vol. 39, no. 8, pp. 926–935, 2016.
    [13] K. L. Lee, K. H. Chang and W. F. Pan, “Effects of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending,” Int. J. Struct. Stab. Dyn., vol. 18, no. 7, 1850090 [23 pages], 2018.
    [14] K. L. Lee, M. L. Weng and W. F. Pan, “On the failure of round-hole tubes under cyclic bending,” J. Chinese Soc. Mech. Eng., vol. 40, no. 6, pp. 663–673, 2019.
    [15] K. L. Lee, Y. S. Huang and W. F. Pan, “Influence of redundant hole on the degradation and failure of round-hole tubes under cyclic bending,” J. Chinese Inst. Eng., vol. 44, no. 5, pp. 478–490, 2019.
    [16] K. L. Lee, Y. C. Tsai and W. F. Pan, “Mean curvature effect on the response and failure of round-hole tubes submitted to cyclic bending,” Adv. Mech. Eng., vol. 13, no. 11, pp. 1–14, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE