| 研究生: |
張延宗 Jhang, Yan-Zong |
|---|---|
| 論文名稱: |
基於狀態變數與Hermite型近似之移動最小二乘法在古典板之應用 The Moving Least Square Methods Based on State Variables and Hermite Type Approximation for The Analysis of Classical Plates |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 185 |
| 中文關鍵詞: | 無元素法 、移動最小二乘法 、古典板理論 、Hermite型 |
| 外文關鍵詞: | meshless method, moving least square method, theory of classical plates, Hermite type |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文分別以基於狀態變數與Hermite型近似之移動最小二乘法分析古典板問題。針對狀態變數之數值方法,將古典板之四階偏微分控制方程分解成以狀態變數表示的八個偶合在一起之一階偏微分方程,並建立各變量之近似函數,且各近似函數間相互獨立。而對於Hermite型近似方法,除了將變位與其一階導數之殘値納入加權殘値二次式計算之外,同時將高階導數如彎矩、剪力之殘値一併考慮,所建立的各變量近似函數彼此相依。兩種數值方法在節點上皆具有八個自由度,建立各主變數之近似函數,並透過移動最小二乘法一次求解出所有變量。針對在不同形狀、不同邊界條件且不同載重作用下之算例,其數值結果顯示本文所採用之兩種數值方法對各變量皆可達到良好之精度與收斂性。
The moving least square methods (MLS) based on state variables and Hermite type approximation are proposed to analyze classical plate problems. For the method based on state variables, the fourth order governing partial differential equation for a plate is decomposed into eight coupled partial differential equations of first order. The approximate functions of state variables are constructed. For the method based on the Hermite type, the residuals of the approximation at each node is considered not only the primary variable and its first-order derivatives, but also the higher order variables, such as the bending moment and shear force. Both of the present methods possess eight degrees of freedom at each node. We construct the approximate functions of all the state variables, and the moving least square technique is employed to solve all of the variables once. Several numerical examples of a plate under different loads with different geometric shapes and various boundary conditions are calculated. It is shown that the present methods have excellent accuracy and high convergence rate.
1. Lucy, L.B., A numerical approach to the testing of the fission hypothesis. The astronomical journal, 1977. 82: p. 1013-1024.
2. Monaghan, J.J., An introduction to SPH. Computer physics communications, 1988. 48(1): p. 89-96.
3. Swegle, J., D. Hicks, and S. Attaway, Smoothed particle hydrodynamics stability analysis. Journal of computational physics, 1995. 116(1): p. 123-134.
4. Dyka, C. and R. Ingel, Addressing Tension Instability in SPH Methods. 1994, DTIC Document.
5. Nayroles, B., G. Touzot, and P. Villon, Generalizing the finite element method: diffuse approximation and diffuse elements. Computational mechanics, 1992. 10(5): p. 307-318.
6. Belytschko, T., Y.Y. Lu, and L. Gu, Element‐free Galerkin methods. International journal for numerical methods in engineering, 1994. 37(2): p. 229-256.
7. Liu, W.K., S. Jun, and Y.F. Zhang, Reproducing kernel particle methods. International journal for numerical methods in fluids, 1995. 20(8‐9): p. 1081-1106.
8. Liu, W.K., S. Jun, S. Li, J. Adee and T. Belytschko, Reproducing kernel particle methods for structural dynamics. International Journal for Numerical Methods in Engineering, 1995. 38(10): p. 1655-1679.
9. Chen, J.-S., C. Pan, C.T. Wu and W.K. Liu, Reproducing kernel particle methods for large deformation analysis of non-linear structures. Computer Methods in Applied Mechanics and Engineering, 1996. 139(1): p. 195-227.
10. Onate, E., S. Idelsohn, OC. Zienkiewicz and RL. Taylor, A finite point method in computational mechanics. Applications to convective transport and fluid flow. International journal for numerical methods in engineering, 1996. 39(22): p. 3839-3866.
11. Duarte, C.A. and J.T. Oden, Hp clouds-an hp meshless method. Numerical methods for partial differential equations, 1996. 12(6): p. 673-706.
12. Liszka, T., C. Duarte, and W. Tworzydlo, Meshless cloud method. Computer Methods in Applied Mechanics and Engineering, 1996. 139(1): p. 263-288.
13. Belytschko, T., Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent developments. Computer methods in applied mechanics and engineering, 1996. 139(1): p. 3-47.
14. Zhu, T., J. Zhang, and S. Atluri, A meshless local boundary integral equation (LBIE) method for solving nonlinear problems. Computational Mechanics, 1998. 22(2): p. 174-186.
15. Zhu, T., J.-D. Zhang, and S. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach. Computational Mechanics, 1998. 21(3): p. 223-235.
16. Atluri, S. and T. Zhu, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational mechanics, 1998. 22(2): p. 117-127.
17. Aluru, N., A point collocation method based on reproducing kernel approximations. International Journal for Numerical Methods in Engineering, 2000. 47(6): p. 1083-1121.
18. Zhang, X., X.-H. Liu, K.-Z. Song and M.-W. Lu, Least‐squares collocation meshless method. International Journal for Numerical Methods in Engineering, 2001. 51(9): p. 1089-1100.
19. Liew, K., T. Ng, and Y. Wu, Meshfree method for large deformation analysis–a reproducing kernel particle approach. Engineering Structures, 2002. 24(5): p. 543-551.
20. Sladek, J., V. Sladek, and H.A. Mang, Meshless local boundary integral equation method for simply supported and clamped plates resting on elastic foundation. Computer methods in applied mechanics and engineering, 2002. 191(51): p. 5943-5959.
21. Liu, G.-R. and Y. Gu, A point interpolation method for two-dimensional solids. International Journal for Numerical Methods in Engineering, 2001. 50(4): p. 937-951.
22. Wang, J. and G. Liu, A point interpolation meshless method based on radial basis functions. International Journal for Numerical Methods in Engineering, 2002. 54(11): p. 1623-1648.
23. Li, H., TY. Ng, JQ. Cheng and KY. Lam, Hermite–Cloud: a novel true meshless method. Computational Mechanics, 2003. 33(1): p. 30-41.
24. Belinha, J. and L. Dinis, Analysis of plates and laminates using the element-free Galerkin method. Computers & structures, 2006. 84(22): p. 1547-1559.
25. Liu, Y., Y. Hon, and K. Liew, A meshfree Hermite‐type radial point interpolation method for Kirchhoff plate problems. International journal for numerical methods in engineering, 2006. 66(7): p. 1153-1178.
26. Wang, Y.-M., S.-M. Chen, and C.-P. Wu, A meshless collocation method based on the differential reproducing kernel interpolation. Computational Mechanics, 2010. 45(6): p. 585-606.
27. Yang, S.-W., Y.-M. Wang, C.-P. Wu and H.-T. Hu, A meshless collocation method based on the differential reproducing kernel approximation. Computer Modeling in Engineering and Sciences (CMES), 2010. 60(1): p. 1.
28. Chen, S.-M., C.-P. Wu, and Y.-M. Wang, A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli–Euler beams and Kirchhoff–Love plates. Computational Mechanics, 2011. 47(4): p. 425-453.
29. 張祐綱, Hermite type 之移動最小二乘法在板, 梁分析上之應用. 成功大學土木工程學系學位論文, 2009: p. 1-109.
30. 林均威, 受束制之移動最小二乘法在古典板上之應用. 成功大學土木工程學系學位論文, 2013.
31. Timoshenko, S., S. Woinowsky-Krieger, and S. Woinowsky-Krieger, Theory of plates and shells. Vol. 2. 1959: McGraw-hill New York.