簡易檢索 / 詳目顯示

研究生: 何元平
Ho, Yuan-Ping
論文名稱: 撓性等力端效器之拓樸最佳化設計
Topology Optimization of a Compliant Constant-Force End-Effector
指導教授: 劉至行
Liu, Chih-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 126
中文關鍵詞: 等力機構撓性機構端效器拓樸最佳化形態學
外文關鍵詞: constant-force mechanism, compliant mechanism, end-effector, topology optimization, mathematical morphology
相關次數: 點閱:138下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 撓性等力端效器可在不同的輸入位移條件下,在輸出端維持等力輸出,且不需額外加裝感測器進行輸出力量控制,可配合加工工具裝配於機械手臂上,提供過載保護以及保證加工時的等力輸出。本研究提出一個撓性等力機構拓樸最佳化方法來設計一個創新的撓性等力端效器,此流程採用幾何非線性有限元素法來進行結構分析,並加入超彈性體元素避免大變形時元素產生畸變現象,同時使用考慮真實輸出位移及虛擬輸出力的複合目標函數,並以移動漸進線方法更新設計變數。本研究於拓樸最佳化流程中加入密度濾化演算法以及參數化投射方法,用以解決網格相依以及棋盤狀網格等問題,同時為了確保拓樸結果的連接性與完整性,利用形態學運算方法,來避免拓樸最佳化結果產生未連接或單點連接之結構,並可在確保結構連接性的同時減少分枝結構生成。本研究藉由所提出的撓性等力機構拓樸最佳化流程,進行反向機構與夾爪機構的最佳化案例測試,驗證本研究之最佳化流程可適用於不同類型的撓性等力機構設計。並透過此流程設計出一個創新的撓性等力壓縮機構,此機構可做為撓性等力端效器模組之關鍵元件,使用TPE軟性材料以3D列印的方式製作,通過實驗量測撓性等力壓縮機構的輸入位移與輸出力量關係,得到厚度10 mm之撓性等力壓縮機構的等力輸出區間為5 mm至13 mm,等力值為4.3 N,力量值平均絕對誤差為2.55%,而力量值最大振幅為4.30%。本研究實際製作了一個創新的撓性等力端效器進行靜態壓縮試驗以及動態曲面接觸試驗,驗證撓性等力端效器模組可通過調整撓性等力壓縮機構的數量與厚度來調整輸出力量,且力量輸出與裝配機構的數量及厚度成正比。

    This study presents a topology optimization procedure to design an innovative compliant constant-force end effector that can provide overload protection and ensure constant output force during operation without the need for additional sensors. The geometrically nonlinear finite element analysis is used and the hyperelastic elements are introduced to avoid distortion when large deformation. A composite objective function considering the actual output displacement and artificial output force is used, and the design variables are updated by the method of moving asymptotes. The density filter scheme and the projection scheme are used to overcome the mesh dependence problem and the checkerboard pattern problem. In addition, a morphology-based scheme is developed to enhance the connectivity of topological results. Through the proposed optimal design procedure, two types of compliant constant-force mechanisms (including a compliant constant-force inverter and a compliant constant-force gripper), and an innovative compliant constant-force compression mechanism have been synthesized. The compliant constant-force compression mechanism can be used as a key component of a compliant constant-force end effector module. The experimental results show that the constant-force range of the compliant constant-force compression mechanism is from 5 to 13 mm, the constant output force is 4.3 N, the average absolute error is 2.55%, and the maximum amplitude of the constant output force is 4.30%. The static compression test and dynamic contact test for the compliant constant-force end effector are performed. The results show that the output force is proportional to the number and thickness of the compliant constant-force compression mechanisms.

    摘要 i ABSTRACT ii 致謝 xxi 目錄 xxii 表目錄 xxv 圖目錄 xxvi 符號說明 xxxi 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1 等力機構文獻回顧 4 1-2-2 拓樸最佳化文獻回顧 7 1-3 研究目的 10 1-4 本文架構 11 第二章 拓樸最佳化理論 12 2-1 前言 12 2-2 幾何非線性拓樸最佳化 14 2-2-1 幾何非線性有限元素分析 14 2-2-2 虛擬彈簧之設計 16 2-2-3 複合目標函數誤差平方和最小化之最佳化問題 19 2-2-4 超彈性體假設法 21 2-2-5 幾何非線性最佳化問題之元素靈敏度分析 23 2-3 MMA(Method of Moving Asymptotes)理論與參數選用 27 2-4 濾化演算法與投射方法 31 2-5 基於形態學之更新流程 35 2-6 撓性等力機構拓樸最佳化流程 40 2-7 本章小結 42 第三章 撓性等力機構設計 43 3-1 前言 43 3-2 邊界條件介紹 43 3-2-1 範例機構一 43 3-2-2 範例機構二 45 3-3 拓樸最佳化結果與比較 46 3-3-1 範例機構一 47 3-3-2 範例機構二 57 3-4 本章小結 68 第四章 撓性等力端效器設計 69 4-1 前言 69 4-2 邊界條件介紹 69 4-3 撓性等力壓縮機構之拓樸最佳化結果與分析 71 4-3-1 拓樸最佳化結果 72 4-3-2 低實體密度元素與超彈性體元素之影響 77 4-3-3 邊緣平滑化之影響 78 4-4 撓性等力端效器模組設計 82 4-5 本章小結 86 第五章 撓性等力端效器實驗 87 5-1 前言 87 5-2 撓性等力壓縮機構製造與實驗 87 5-2-1 撓性等力壓縮機構製造與模擬分析 87 5-2-2 撓性等力壓縮機構實驗 90 5-3 撓性等力端效器實驗 98 5-3-1 撓性等力端效器模組製作 98 5-3-2 撓性等力端效器靜態壓縮試驗 102 5-3-3 撓性等力端效器動態曲面接觸試驗 111 5-4 撓性等力機構比較與討論 116 5-5 本章小結 118 第六章 結論與建議 119 6-1 結論 119 6-2 建議 120 參考文獻 122

    [1] E. A. Erlbacher, "Force control basics," Industrial Robot: An International Journal, vol. 27, pp. 20-29, 2000.
    [2] P. Wang and Q. Xu, "Design and modeling of constant-force mechanisms: A survey," Mechanism and Machine Theory, vol. 119, pp. 1-21, 2018.
    [3] L. L. Howell, Compliant Mechanisms. John Wiley & Sons, 2001.
    [4] Q. Xu, "Design of a large-stroke bistable mechanism for the application in constant-force micropositioning stage," Journal of Mechanisms and Robotics, vol. 9, no. 1, 011006, 2017.
    [5] P. Wang and Q. Xu, "Design and testing of a flexure-based constant-force stage for biological cell micromanipulation," IEEE Transactions on automation science and engineering, vol. 15, no. 3, pp. 1114-1126, 2017.
    [6] P. Wang and Q. Xu, "Design of a flexure-based constant-force XY precision positioning stage," Mechanism and Machine Theory, vol. 108, pp. 1-13, 2017.
    [7] J.-Y. Wang and C.-C. Lan, "A constant-force compliant gripper for handling objects of various sizes," Journal of Mechanical Design, vol. 136, no. 7, 071008, 2014.
    [8] X. Zhang and Q. Xu, "Design and testing of a novel 2-DOF compound constant-force parallel gripper," Precision Engineering, vol. 56, pp. 53-61, 2019.
    [9] X. Zhang and Q. Xu, "Design and analysis of a 2-DOF compliant gripper with constant-force flexure mechanism," Journal of Micro-Bio Robotics, vol. 15, no. 1, pp. 31-42, 2019.
    [10] S. Perai, "Methodology of compliant mechanisms and its current developments in applications: a review," American Journal of Applied Sciences, vol. 4, no. 3, pp. 160-167, 2007.
    [11] O. Sigmund, "Topology optimization: a tool for the tailoring of structures and materials," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 358, no. 1765, pp. 211-227, 2000.
    [12] H.-T. Pham and D.-A. Wang, "A constant-force bistable mechanism for force regulation and overload protection," Mechanism and Machine Theory, vol. 46, no. 7, pp. 899-909, 2011.
    [13] Y.-H. Chen and C.-C. Lan, "An Adjustable Constant-Force Mechanism for Adaptive End-Effector Operations," Journal of Mechanical Design, vol. 134, no. 3, 031005, 2012.
    [14] Y. Liu, D.-J. Li, D.-P. Yu, J.-G. Miao, and J. Yao, "Design of a curved surface constant force mechanism," Mechanics Based Design of Structures and Machines, vol. 45, no. 2, pp. 160-172, 2017.
    [15] P. Lambert and J. L. Herder, "An Adjustable Constant Force Mechanism Using Pin Joints and Springs," in New Trends in Mechanism and Machine Science: Springer, pp. 453-461, 2017.
    [16] Y. Wei and Q. Xu, "Design of a new passive end-effector based on constant-force mechanism for robotic polishing," Robotics and Computer-Integrated Manufacturing, vol. 74, 102278, 2022.
    [17] M. Cavazzuti, A. Baldini, E. Bertocchi, D. Costi, E. Torricelli, and P. Moruzzi, "High performance automotive chassis design: a topology optimization based approach," Structural and Multidisciplinary Optimization, vol. 44, no. 1, pp. 45-56, 2011.
    [18] J.-H. Zhu, W.-H. Zhang, and L. Xia, "Topology optimization in aircraft and aerospace structures design," Archives of Computational Methods in Engineering, vol. 23, no. 4, pp. 595-622, 2016.
    [19] O. Sigmund, "On the design of compliant mechanisms using topology optimization," Journal of Structural Mechanics, vol. 25, no. 4, pp. 493-524, 1997.
    [20] N. P. van Dijk, K. Maute, M. Langelaar, and F. Van Keulen, "Level-set methods for structural topology optimization: a review," Structural and Multidisciplinary Optimization, vol. 48, no. 3, pp. 437-472, 2013.
    [21] S. Nishiwaki, M. I. Frecker, S. Min, and N. Kikuchi, "Topology optimization of compliant mechanisms using the homogenization method," International Journal for Numerical Methods in Engineering, vol. 42, no. 3, pp. 535-559, 1998.
    [22] M. P. Bendsøe and O. Sigmund, "Material interpolation schemes in topology optimization," Archive of Applied Mechanics, vol. 69, no. 9-10, pp. 635-654, 1999.
    [23] A. Saxena, "A Material-Mask Overlay Strategy for Continuum Topology Optimization of Compliant Mechanisms Using Honeycomb Discretization," Journal of Mechanical Design, vol. 130, no. 8, 082304., 2008.
    [24] G. Allaire, F. Jouve, and A.-M. Toader, "Structural optimization using sensitivity analysis and a level-set method," Journal of Computational Physics, vol. 194, no. 1, pp. 363-393, 2004.
    [25] O. Sigmund, "A 99 line topology optimization code written in Matlab," Structural and Multidisciplinary Optimization, vol. 21, no. 2, pp. 120-127, 2001.
    [26] X. Huang and M. Y. Xie, Evolutionary Topology Optimization of Continuum Structures: Methods and Applications. John Wiley & Sons, 2010.
    [27] K. Svanberg, "The method of moving asymptotes—a new method for structural optimization," International Journal for Numerical Methods in Engineering, vol. 24, no. 2, pp. 359-373, 1987.
    [28] M. Y. Wang, "Mechanical and geometric advantages in compliant mechanism optimization," Frontiers of Mechanical Engineering in China, vol. 4, no. 3, pp. 229-241, 2009.
    [29] S. Canfield and M. Frecker, "Topology optimization of compliant mechanical amplifiers for piezoelectric actuators," Structural and Multidisciplinary Optimization, vol. 20, no. 4, pp. 269-279, 2000.
    [30] S. Chen, M. Y. Wang, and A. Q. Liu, "Shape feature control in structural topology optimization," Computer-Aided Design, vol. 40, no. 9, pp. 951-962, 2008.
    [31] Z. Luo, L. Tong, M. Y. Wang, and S. Wang, "Shape and topology optimization of compliant mechanisms using a parameterization level set method," Journal of Computational Physics, vol. 227, no. 1, pp. 680-705, 2007.
    [32] M. I. Frecker, G. K. Ananthasuresh, S. Nishiwaki, N. Kikuchi, and S. Kota, "Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization," Journal of Mechanical Design, vol. 119, no. 2, pp. 238-245, 1997.
    [33] D. Jung and H. C. Gea, "Topology optimization of nonlinear structures," Finite Elements in Analysis and Design, vol. 40, no. 11, pp. 1417-1427, 2004.
    [34] Q. Chen, X. Zhang, and B. Zhu, "A 213-line topology optimization code for geometrically nonlinear structures," Structural and Multidisciplinary Optimization, vol. 59, no. 5, pp. 1863-1879, 2019.
    [35] C. B. W. Pedersen, T. Buhl, and O. Sigmund, "Topology synthesis of large‐displacement compliant mechanisms," International Journal for numerical methods in engineering, vol. 50, no. 12, pp. 2683-2705, 2001.
    [36] T. Buhl, C. B. Pedersen, and O. Sigmund, "Stiffness design of geometrically nonlinear structures using topology optimization," Structural and Multidisciplinary Optimization, vol. 19, no. 2, pp. 93-104, 2000.
    [37] Y. Luo, M. Y. Wang, and Z. Kang, "Topology optimization of geometrically nonlinear structures based on an additive hyperelasticity technique," Computer methods in applied mechanics and engineering, vol. 286, pp. 422-441, 2015.
    [38] L. Liu, J. Xing, Q. Yang, and Y. Luo, "Design of large-displacement compliant mechanisms by topology optimization incorporating modified additive hyperelasticity technique," Mathematical Problems in Engineering, vol. 2017, 2017.
    [39] O. Sigmund and J. Petersson, "Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima," Structural Optimization, vol. 16, no. 1, pp. 68-75, 1998.
    [40] T. E. Bruns and D. A. Tortorelli, "An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms," International Journal for Numerical Methods in Engineering, vol. 57, no. 10, pp. 1413-1430, 2003.
    [41] P. A. L. S. Martins, R. M. Natal Jorge, and A. J. M. Ferreira, "A comparative study of several material models for prediction of hyperelastic properties: Application to silicone‐rubber and soft tissues," Strain, vol. 42, no. 3, pp. 135-147, 2006.
    [42] A. Diaz and O. Sigmund, "Checkerboard patterns in layout optimization," Structural Optimization, vol. 10, no. 1, pp. 40-45, 1995.
    [43] O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, no. 4, pp. 401-424, 2007.
    [44] D. Montoya-Zapata, D. A. Acosta, O. Ruiz-Salguero, and D. Sanchez-Londono, "FEA structural optimization based on metagraphs," in The 13th International Conference on Soft Computing Models in Industrial and Environmental Applications , pp. 209-220, 2018.
    [45] D. Montoya-Zapata, D. A. Acosta, O. Ruiz-Salguero, J. Posada, and D. Sanchez-Londono, "A general meta-graph strategy for shape evolution under mechanical stress," Cybernetics and Systems, vol. 50, no. 1, pp. 3-24, 2019.
    [46] 鍾富名,拓樸最佳化結合元圖策略於考慮真實輸出位移下之幾何非線性等力輸出撓性機構設計,碩士論文,機械工程學系,國立成功大學,2020。
    [47] E. Dougherty, Mathematical morphology in image processing. CRC press, 2018.
    [48] A. Ledda, "Mathematical Morphology in Image Processing," PhD, University of Antwerp, 2007.
    [49] S. Wang, K. Tai, and M. Wang, "An enhanced genetic algorithm for structural topology optimization," International Journal for Numerical Methods in Engineering, vol. 65, no. 1, pp. 18-44, 2006.
    [50] M. Liu, J. Zhan, B. Zhu, and X. Zhang, "Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness," Mechanism and Machine Theory, vol. 146, 103728, 2020.
    [51] D. Petković, N. D. Pavlović, S. Shamshirband, and N. B. Anuar, "Development of a new type of passively adaptive compliant gripper," Industrial Robot, vol. 40, no. 6, pp. 610-623, 2013.
    [52] S. Rahmatalla and C. C. Swan, "Sparse monolithic compliant mechanisms using continuum structural topology optimization," International Journal for Numerical Methods in Engineering, vol. 62, no. 12, pp. 1579-1605, 2005.
    [53] C. B. W. Pedersen, N. A. Fleck, and G. K. Ananthasuresh, "Design of a compliant mechanism to modify an actuator characteristic to deliver a constant output force," Journal of Mechanical Design, vol. 128, no. 5, pp. 1101-1112, 2006.
    [54] K. Svanberg, "MMA and GCMMA-two methods for nonlinear optimization," Technical report. 2007.
    [55] M. Kollmann, "Sensitivity analysis: The direct and adjoint method," M.S. thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, 2010.
    [56] J. E. K. Hersbøll, "3D Topology Optimization with Fatigue Constraints," Department of Mechanical and Manufacturing Engineering, Aalborg University, 2018.
    [57] M. Y. Wang and S. Wang, "Bilateral filtering for structural topology optimization," International Journal for Numerical Methods in Engineering, vol. 63, no. 13, pp. 1911-1938, 2005.
    [58] O. Sigmund, "Morphology-based black and white filters for topology optimization," Structural and Multidisciplinary Optimization, vol. 33, no. 4-5, pp. 401-424, 2007.
    [59] T. E. Bruns and D. A. Tortorelli, "Topology optimization of non-linear elastic structures and compliant mechanisms," Computer Methods in Applied Mechanics and Engineering, vol. 190, no. 26-27, pp. 3443-3459, 2001.
    [60] B. Bourdin, "Filters in topology optimization," International Journal for Numerical Methods in Engineering, vol. 50, no. 9, pp. 2143-2158, 2001.
    [61] J. K. Guest, J. H. Prévost, and T. Belytschko, "Achieving minimum length scale in topology optimization using nodal design variables and projection functions," International Journal for Numerical Methods in Engineering, vol. 61, no. 2, pp. 238-254, 2004.
    [62] S. Xu, Y. Cai, and G. Cheng, "Volume preserving nonlinear density filter based on heaviside functions," Structural and Multidisciplinary Optimization, vol. 41, no. 4, pp. 495-505, 2010.
    [63] A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, and S. Nishiwaki, "Heaviside projection based topology optimization by a PDE-filtered scalar function," Structural and Multidisciplinary Optimization, vol. 44, no. 1, pp. 19-24, 2011.
    [64] F. Wang, B. S. Lazarov, and O. Sigmund, "On projection methods, convergence and robust formulations in topology optimization," Structural and Multidisciplinary Optimization, vol. 43, no. 6, pp. 767-784, 2011.
    [65] C. Alonso, R. Ansola, E. Veguería, and O. M. Querin, "Results comparison between SIMP and SERA for compliant mechanisms design," Engineering Optimization 2014, 9, 2014.
    [66] M. S. Evans and L. L. Howell, "Constant-force end-effector mechanism," in IASTED Int. Conf. on Robotics and Applications, pp. 250-256, 1999.

    無法下載圖示 校內:2027-08-25公開
    校外:2027-08-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE