| 研究生: |
黃啟倫 Huang, Chi-lun |
|---|---|
| 論文名稱: |
CoSiAl合金的熱電性質與電子結構 The thermoelectric properties and electronic structure of CoSiAl alloys |
| 指導教授: |
呂欽山
Lue, Chin-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 34 |
| 中文關鍵詞: | 熱電 |
| 外文關鍵詞: | CoSi, thermoelectric |
| 相關次數: | 點閱:66 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
過渡金屬元素鈷(Co)的單一矽化合物(monosiliside)在摻雜鋁(Al)後形成合金CoSi1-xAlx,測量此合金隨溫度變化的電阻率(ρ)、熱電係數(S)、熱傳導率(κ)。由測得的數據可以得知當Al取代了Si的晶格位置後使得電阻率(ρ)跟晶格熱傳導率(κL)有顯著的減小。從理論上的分析可以看出,晶格熱傳導率(κL)的減小主要是來自聲子與晶格缺陷散射的增強。當x ≧ 0.05的時候,CoSi1-xAlx的熱電係數由負值轉變為正值,並且出現熱電係數的極大值。而Al的加入導致了電洞摻雜效應的產生,使得處於膺能隙中央附近的費米能階(Fermi-level)向下偏移。雖然熱電效能因Al的摻雜而大幅改進,但是本實驗CoSi1-xAlx樣品之ZT值跟目前公認的熱電材料比較,大約還有一個數量級的差距。
We report the effect of Al on the temperature-dependent electrical resistivity, Seebeck coefficient, as well as thermal conductivity in the binary compound cobalt monosilicide. It is found that the substitution of Al onto the Si sites causes a dramatic decrease in the electrical resistivity and lattice thermal conductivity. A theoretical analysis indicated that from point-defect scattering of the phonons. For x ≧ 0.05 in the CoSi1-xAlx system, the Seebeck coefficient changes sign from negative to positive, accompanied by the appearance of a broad maximum. These features are associated with the change in the electronic band structure, where the Fermi level shifts downward from the center of the pseudogap due to hole-doping effect. While the thermoelectric performance improves with increasing Al substitution, the largest figure-of-merit ZT value among these alloys is still an order of magnitude lower than conventional thermoelectric materials.
【1】 Thermoelectric Materials and New Approaches, edited by T.M. Tritt, M. Kanatzidis, H.B. Lyon, Jr., and G.D. Mahan, Mater. Res. Soc. Symp. Proc. 478 (Materials Reasearch Society, Pittsburg, 1997).
【2】 H. Lange, Phys. Status Solidi B 201, 3 (1997).
【3】 S. Asanabe, D. Shinoda, and Y. Sasaki, Phys. Rev. 134, A774(1964).
【4】 S.W. Kim, Y. Mishima, and D.C. Choi, Intermetallics 10, 177 (2002).
【5】 G.T. Alekseeva, V.K. Zaitsev, A. Petrov, V.I. Tarasov, and M.I. Fedorov, Sov. Phys. Solid State 23, 1685 (1981).
【6】 E.N. Nikitin, Sov. Phys. Solid States 2, 588 (1960).
【7】 F.J. DiSalvo, Science 285, 703 (1999).
【8】 W.B. Pearson, A Handbook of Lattice Spacings and Structures of Materials and Alloys (Pergamon, Oxford, 1967); Structure Reports (International Union of Crystallography, Utrecht, 1967).
【9】 C. S. Lue, and Y. -K. Kuo, Phys. Rev. B 66, 085121 (2002).
【10】 A.F. Ioffe, Physics of Semiconductors (Infosearch Limited, London, 1960).
【11】 C. Kittel, Introduction to Solid State Physics, 7th edited, ch. 6 (1996).
【12】 E.N. Nikitin, P.V. Tamarin, and V.I. Tarasov, Sov. Phys. Solid State 11, 2002 (1970).
【13】 J. Yang, in Chemistry, Physics and Materials Science of Thermoelectric Materials, Beyond Bismuth Telluride, edited by M.G. Kanatzidis, S.D. Mahanti, and T.P. Hogan (Kluwer Academic, Dordrecht, 2003), p. 169.
【14】 C. S. Lue, W. J. Lai, C. C. Chen, and Y. -K. Kuo, J. Phys.: Condens. Matter 16, 4283 (2004).
【15】 J. Yang, G. P. Meisner, D.T. Morelli, and C. Uher, Phys. Rev. B 63, 014410 (2000)
【16】 J. Yang, D. T. Morelli, G. P. Meisner, W. Chen, J. S. Dyck, and C. Uher, Phys. Rev. B 65, 095115 (2002)
【17】 J. Callaway, Phys. Rev. 113, 1046 (1959).
【18】 J. Callaway and H.C. von Baeyer, Phys. Rev. 120, 1149 (1960).
【19】 A. Lacerda, H. Zhang, P.C. Canfield, M.F. Hundley, Z. Fisk, J.D. Thompson, C.L. Seaman, M.B. Maple, and G. Aeppli, Physica B 186, 1043 (1993).
【20】 P.G. Klemens, Proc. Phys. Soc., London, Sect. A 68, 1113 (1959).
【21】 CRC Handbook of Thermoelectrics, edited by D.M. Rowe (CRC Press, Boca Raton, FL, 1995).
【22】 C. Lahalle-Gravier, B Lenoir, S. Scherrer and H. Scherrer, J. Phys. Chem. Solids 59, 13 (1997).