| 研究生: |
簡智祥 Chiehn, Jyh-Shvang |
|---|---|
| 論文名稱: |
高屏地區冬季奈米微粒分佈、來源與成長特性 Size distributions、sources and formation mechanisms of nanoparticles at Kaoping in winter |
| 指導教授: |
吳義林
Wu, Yee-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 粒徑分佈 、成長機制 、奈米粒徑監測儀 、奈米微粒 |
| 外文關鍵詞: | Size distribution, Scanning mobility particle sizer (SMPS), Formation mechnism, Nanoparticle |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為討論高屏地區冬季奈米微粒之粒徑分佈與形成機制,本研究採用2006年10月至2007年2月間南部超級測站之奈米微粒連續監測資料,研究重點則為濃度特徵描述、逐時濃度變化、高濃度事件來源與奈米微粒形成機制,研究方法則利用波峰分離法以獲得主要污染物之粒徑分佈。
南部地區冬季總顆粒(9.8-800nm)平均濃度約40000顆/cm3,粒徑範圍10-30nm之平均顆粒濃度約為13000顆/cm3,粒徑範圍30-90nm之平均顆粒濃度則約為17000顆/cm3,而粒徑範圍大於90nm之平均顆粒濃度則約為10000顆/cm3。 逐日觀測結果顯示南部奈米微粒之粒徑分佈可分為四個叢集,依發生時間定義為:早上叢集、中午叢集、晚上叢集與夜間叢集;除中午叢集之粒徑集中於30nm以下,其餘均集中於30-90nm。此外,假日之中午叢集濃度較非假日高,但假日之早上、晚上與夜間叢集濃度則較非假日低,原因可能為非假日因受交通源影響故有顯著之交通尖峰期叢集。高濃度事件可分為早上、中午、晚上與夜間高濃度事件,早上高濃度事件之濃度與NOx、CO相關,故推論早上高濃度事件應受上班之交通源影響;晚上高濃度事件之濃度則顯示與交通源無關;夜間高濃度事件則部分源自交通源而部分源自工業類別。奈米微粒之形成機制為液相凝滴反應與氣相反應之組合,但應以液相凝滴反應為主;污染源排放與液相凝滴反應均影響奈米微粒之濃度變化,但因正負成長速率出現頻率接近,故總成長速率而言屬於無明顯變化,污染源之排放會直接導致濃度增加,故推論污染源排放為高濃度事件主要貢獻源。
In order to understand the size distribution and formation mechanism of nanoparticles in Kaohsiung and Pingtong in winter, the data which was measured by SMPS+C in PM supersite form October 2006 to February 2007 were used in this srudy. The study focuses on the characteristics of concentration, temporal variation, the concentration of episodic events, and formation mechanisms of nanoparticle.The measured raw data were fitted by combination of log-normal distributions.
Total number concentration for particle with diameter of 9.8 to 800 nm is about 40000 #/cm3 in south Taiwan. Average concentrations of the size ranges of 10-30nm, 30-90nm and over 90nm are 13000, 17000, and 10000 #/cm3, respectively. Diurnal variations show size distribution of nanoparticles can be classified into 4 clusters: (1)morning cluster, (2)noon cluster, (3)evening cluster, and (4)night cluster. Particle size range of noon cluster is less than 30nm, but the others are 30 to 90nm. Furthermore, the concentration of noon cluster on weekend is greater than that on weekdays. But the concentrations of the other cluster on weekend are lower than those on weekdays. The difference may be due to the rush hours on weekdays. Episodic events can be classified into 4 type: (1)morning events, (2)noon events, (3)evening events, and(4)night events. High concentrations of morning events were highly related with NOx and CO concentrations, and it implied that morning events are affected by mobile sources. There is no relationship between evening events and mobile source; some night events are related with mobile emission, and some are related with stationary sources. The formation mechanisms of nanoparticles are the combination of the reaction within droplet and gas phase reaction, but the former is the major mechanism in this research. Primary emission and droplet reaction both affect variations of nanoparticle concentrations. Because the frequencies of positive and negative growth rates are close, the net growth rate is negligible. Therefore, primary emission is major contribution in the episodic events.
Aitchison, J. and J.A.C. Brown, ”The lognormal Distribution Function”, Cambridge University Press, Cambridge, 1957.
Aitken, J.A., “On some nuclei of cloudy condensation”, Transactions of the Royal Society, XXXIX, 1897.
Birmili, W., A. Wiedensohler, C. Plass-Dulmer, H. Berresheim, “Evolution of newly formed aerosol particles in the continental boundary layer: a case study including OH and H2SO4 measurements”, Geophys Res Lett, V27, pp2205-2208, 2000.
Chang, S.C. and C.T. Lee, “Secondary aerosol formation through photochemical reactions estimated by using air quality monitoring data in Taipei City”, Atmospheric Environment, V41, pp4002-4017, 2007.
Deepak, A. and G.. Gali, ”The International Global Aerosol program (IGAP) Plan”, Deepak Publishing, Hampton, VA., 1991.
Fitzgerald, J.W., ”Marine aerosols: a review”, Atmospheric Environment, V25A, pp533-545,1991.
Hering, S.V. and S.K. Friedlander, ”Origins of aerosol sulfur size distributions in the Los Angeles basin”, Atmospheric Environment, V16, pp2647-2656, 1982.
Hinds, W.C, “Aerosol Technology”, Wiley, New York, 1982.
Jaenicke, R., V. Dreiling, E. Lehmann, P.K.Koutsenogii, and J. Sting, ”Condensation nuclei at the German Antarctic Station Vonneymayer”, Tellus, V44B, pp311-31, 1992.
John, W., S.M. Wall, J.L. Ondo, and W. Winklmayr, “Modes in the size distributions of atmospheric inorganic aerosol”, Atmospheric Environment, V24A, pp2349-2359, 1990.
Meng, Z., and J.H. Seindfeld, “On the source of the submicrometer droplet mode of urban and regional aerosols”, Aerosol Science Technology, V20, pp253-265,1994.
McMurry, P.H. and J.C. Wilson, “Growth laws for the formation of secondary ambient aerosols: Implications for chemical conversion mechanisms”, Atmospheric Environment, V15, pp121-134, 1982.
McMurry, P.H., K.S. Woo, R. Weber, D.R. Chen, and D.Y.H. Pui ,“Size distributions of 3 to 10nm Atmospheric Particles : Implications for Nucleation Mechanisms.”, Philosophical Transactions of the Royal Society, London A358, pp2625-2642,2000.
Seinfeld, J.H. and S.N. Pandis, “Atmospheric Chemistry and Physics”, Wiliey, New York, 1998.
Tuch, T., P. Brand, H.E. Wichmann, and J. Heyder, “Variation of Particle Number and Mass Concentration in Various Size Ranges of Ambient Aerosols in Eastern Germany”, Atmospheric Environment, V31, pp4193-4197,1997.
Wall, S.M., W. John, and J.L. Ondo, ”Measurement of aerosol size distributions for nitrate and major ionic species”, Atmospheric Environment, V22, pp1649-1656, 1988.
Watson, J.G., J.C. Chow, D.H. Lowenthal, M.R. Stolzenburg, N.H. Kreisberg, and S.V. Hering, ”Particle size relationships at the Fresno Supersite”, JAWMA, V52, pp822-827,2002.
Watson, J.G., J.C. Chow, K. Park, and D.H. Lowenthal, “Nanoparticle and Ultrafine Particle Events at the Fresno Supersite”, JAWMA, V56, pp417-430, 2006.
Wichmann, H.E., and A. Peters ,“Epidemiological Transactions of the Effects of Ultrafine Particle Exposure”, Philosophical Transactions of the Royal Society, London, A358, pp2751-2769, 2000.
Whitby, K. T., “The physical characteristics of sulfur aerosols”, Atmospheric Environment, V12,pp135-159, 1978.
Woo, K.S., D.R. Chen, D.Y.H. Pui, and P.H. McMurry, “Measurement of Atlanta Aerosol Size Distributions:Observations of Ultrafine Particle Events”, Aerosol Science Technology, V34, pp75-87,2001.
程大維,『台南地區次微米之硝酸鹽與硫酸鹽微粒的成長特性』,碩士論文,國立成功大學環境工程研究所,1996。