| 研究生: |
陳柏縉 Chen, Bo-Ching |
|---|---|
| 論文名稱: |
煆燒對X5R及X6S規格之積層陶瓷電容電性以及微結構影響 Effect of calcination on the electrical properties and microstructure of X5R and X6S dielectric ceramics |
| 指導教授: |
向性一
Hsiang, Hsing-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 積層陶瓷電容 、鈦酸鋇 、煆燒 、核殼結構 |
| 外文關鍵詞: | MLCC, barium titanate, calcination, core-shell structure |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討煆燒處理對國巨X5R及X6S介電陶瓷之微結構、晶體結構以及介電性質等之影響。實驗透過XRD、SEM、TSDC、XPS、交流阻抗及介電性質量測等方法來分析煆燒處理(800, 900, 1000°C)對於X5R及X6S介電陶瓷微結構、核殼結構的完整性、晶粒、晶界電阻及導電活化能之影響。結果發現在TCC曲線的高溫端經1000°C煆燒處理後之樣品,比起無煆燒之樣品明顯平緩許多,可符合X5R或者X6S規格。晶體結構隨煆燒溫度提高其正方性逐漸變小,顯示具立方相殼區之比例提高,四方相核區之比例下降,證實煆燒對形成核殼結構有一定的影響。此外在交流阻抗圖譜分析中發現,隨煆燒溫度上升,樣品之阻抗值均明顯比無煆燒組來得高。隨著煆燒溫度的上升,其晶粒及晶界之導電活化能均增高。存在於胚體中之氧空缺濃度及Ti3+相對含量,均隨著煆燒溫度上升,呈現下降的趨勢。並進一步以熱刺激退極化電流分析,隨著煆燒溫度的上升,可以觀察到去極化電流有明顯下降的趨勢,證明其氧空缺濃度確實隨著煆燒溫度上升而下降。因此推論煆燒效應可使受體元素如Mn2+等先佔據在B位,促使後添加之兩性元素Dy在燒結過程佔據A位,作為施體並產生電子補償,但當再氧化過程時,因氧分壓上升,使其電荷補償機制轉為鋇空缺離子補償,使氧空缺濃度下降,並在晶界形成蕭特基能障,因此提升其絕緣電阻及降低其熱刺激退極化電流。
This study investigates the effects of calcination on the microstructure, crystal structure and dielectric properties of X5R and X6S dielectric ceramics from Yageo. The effects of calcination (800, 900, 1000°C) on the microstructure, core-shell structure, grain size, grain boundary resistance and conductivity activation energy of X5R and X6S dielectric ceramics were analyzed by XRD, SEM, TSDC, XPS, AC impedance and dielectric properties measurements. It was found that the orthogonality of the crystalline structure gradually decreased as the calcination temperature increased, showing an increase in the proportion of cubic phase shell region. With the increase of calcination temperature, the conductivity activation energies of the grain and grain boundary increased. With the increase of calcination temperature, the depolarization current decreased significantly, which proves that the oxygen vacancy concentration really decreased with the increase of calcination temperature. As a result, the calcination effect is inferred to cause acceptor elements such as Mn2+ to occupy the B-site first, and then the added amphoteric element Dy occupies the A-site during the sintering process, acting as a donor and generating electron compensation. Due to the increase in oxygen partial pressure during the reoxidation process, the charge compensation mechanism is changed to barium vacancy compensation. As a result, the oxygen vacancy concentration decreases and a Schottky barrier forms at the grain boundary, increasing insulation resistance and decreasing thermally stimulated depolarization current.
[1]Hong, K., Lee, T. H., Suh, J. M., Yoon, S. H., & Jang, H. W. (2019). Perspectives and challenges in multilayer ceramic capacitors for next generation electronics.Journal of Materials Chemistry C,7(32), 9782-9802.
[2]Han, J., Mantas, P. Q., & Senos, A. M. R. (2002). Defect chemistry and electrical characteristics of undoped and Mn-doped ZnO.Journal of the European Ceramic Society,22(1), 49-59.
[3]Sakabe, Y., Minai, K., & Wakino, K. (1981). High-dielectric constant ceramics for base metal monolithic capacitors.Japanese Journal of Applied Physics,20(S4), 147.
[4]Merkle, R., & Maier, J. (2003). Defect association in acceptor-doped SrTiO3: case study for Fe^' Ti V˙˙ O and Mn″Ti V˙˙ O.Physical Chemistry Chemical Physics,5(11), 2297-2303.
[5]Paunovic, V., Mitic, V. V., Prijic, Z., & Zivkovic, L. (2014). Microstructure and dielectric properties of Dy/Mn doped BaTiO3 ceramics.Ceramics International,40(3), 4277-4284.
[6]Li, W., Qi, J., Wang, Y., Li, L., & Gui, Z. (2002). Doping behaviors of Nb2O5 and Co2O3 in temperature stable BaTiO3-based ceramics.Materials Letters,57(1), 1-5.
[7]Song, Y. H., Hwang, J. H., & Han, Y. H. (2005). Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3.Japanese journal of applied physics,44(3R), 1310.
[8]Kim, J., Kim, D., Kim, J., Kim, Y. N., Hui, K. N., & Lee, H. (2011). Selective substitution and tetragonality by co-doping of dysprosium and thulium on dielectric properties of barium titanate ceramics.Electronic Materials Letters,7(2), 155-159.
[9]D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics (Dielectric Properties). N.Y: J. Wiley, 1976.
[10]Jaffe, H. (1958). Piezoelectric ceramics.Journal of the American Ceramic Society,41(11), 494-498.
[11]Brix, T., Lindemann, F., Praßni, J. S., Diepenbrock, S., & Hinrichs, K. (2014). Visual Analysis of Polarization Domains in Barium Titanate during Phase Transitions.
[12]Sharma, R. K., Chan, N. H., & Smyth, D. M. (1981). Solubility of TiO2 in BaTiO3.Journal of the American Ceramic Society,64(8), 448-451.
[13]Beauger, A., Mutin, J. C., & Niepce, J. C. (1984). Role and behaviour of orthotitanate Ba2TiO4 during the processing of BaTiO3 based ferroelectric ceramics.Journal of materials science,19(1), 195-201.
[14]Lee, J. K., Hong, K. S., & Jang, J. W. (2001). Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics.Journal of the American Ceramic Society,84(9), 2001-2006.
[15]Rase, D. E., & Roy, R. (1955). Phase equilibria in the system BaO–TiO2.Journal of the American Ceramic Society,38(3), 102-113.
[16]Lee, S., Randall, C. A., & Liu, Z. K. (2007). Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate.Journal of the American Ceramic Society,90(8), 2589-2594.
[17]Yoon, S. H., Lee, J. H., Kim, D. Y., & Hwang, N. M. (2003). Effect of the liquid‐phase characteristic on the microstructures and dielectric properties of donor‐(Niobium) and acceptor‐(Magnesium) doped barium titanate.Journal of the American Ceramic Society,86(1), 88-92.
[18]Maurice, A. K., & Buchanan, R. C. (1987). Preparation and stoichiometry effects on microstructure and properties of high purity BaTiO3.Ferroelectrics,74(1), 61-75..
[19]Lee, W. H., Tseng, T. Y., & Hennings, D. F. (2000). Effects of calcination temperature and A/B ratio on the dielectric properties of (Ba, Ca)(Ti, Zr, Mn) O3 for multilayer ceramic capacitors with nickel electrodes.Journal of the American Ceramic Society,83(6), 1402-1406.
[20]Jaffe, H. (1958). Piezoelectric ceramics.Journal of the American Ceramic Society,41(11), 494-498.
[21]Herbert, J. M. (1985).Ceramic dielectrics and capacitors(Vol. 6). CRC Press.
[22]Maurya, D., & Priya, S. (2015). Effect of bismuth doping on the dielectric and piezoelectric properties of Ba1-xBixTiO3 lead-free ceramics.Integrated Ferroelectrics,166(1), 186-196.
[23]Morrison, F. D., Sinclair, D. C., & West, A. R. (2001). Doping mechanisms and electrical properties of La-doped BaTiO3 ceramics.International Journal of Inorganic Materials,3(8), 1205-1210.
[24]Chan, N. H., Sharma, R. K., & Smyth, D. M. (1982). Nonstoichiometry in Acceptor‐Doped BaTiO3.Journal of the American Ceramic Society,65(3), 167-170.
[25]Maier, R. A., Pomorski, T. A., Lenahan, P. M., & Randall, C. A. (2015). Acceptor-oxygen vacancy defect dipoles and fully coordinated defect centers in a ferroelectric perovskite lattice: Electron paramagnetic resonance analysis of Mn2+ in single crystal BaTiO3.Journal of Applied Physics,118(16), 164102.
[26]Kishi, H., Kohzu, N., Sugino, J., Ohsato, H., Iguchi, Y., & Okuda, T. (1999). The effect of rare-earth (La, Sm, Dy, Ho and Er) and Mg on the microstructure in BaTiO3.Journal of the European Ceramic Society,19(6-7), 1043-1046.
[27]Jung, Y. S., Na, E. S., Paik, U., Lee, J., & Kim, J. (2002). A study on the phase transition and characteristics of rare earth elements doped BaTiO3.Materials research bulletin,37(9), 1633-1640.
[28]Hennings, D., Schnell, A., & Simon, G. (1982). Diffuse ferroelectric phase transitions in Ba (Ti1‐yZry) O3 ceramics.Journal of the American Ceramic Society,65(11), 539-544.
[29]Kim, J. H., Yoon, S. H., & Han, Y. H. (2007). Effects of Y2O3 addition on electrical conductivity and dielectric properties of Ba-excess BaTiO3.Journal of the European Ceramic Society,27(2-3), 1113-1116.
[30]Kaneda, K., Iwazaki, Y., & Konishi, Y. (2018). The mechanism of lifetime improvement through vanadium addition to multilayer ceramic capacitor with nickel electrode.Journal of the Ceramic Society of Japan,126(11), 931-935.
[31]Sato, S., Nakano, Y., Sato, A. S. A., & Nomura, T. N. T. (1997). Effect of Y-doping on resistance degradation of multilayer ceramic capacitors with Ni electrodes under the highly accelerated life test.Japanese journal of applied physics,36(9S), 6016.
[32]Burn, I., & Maher, G. H. (1975). High resistivity BaTiO3 ceramics sintered in CO-CO2 atmospheres.Journal of Materials Science,10(4), 633-640.
[33]Desu, S. B., & Subbarao, E. C. (1981). Effect of oxidation states of Mn on the phase stability of Mn-doped BaTiO3.Ferroelectrics,37(1), 665-668.
[34]Hennings, D. F. (2001). Dielectric materials for sintering in reducing atmospheres.Journal of the european ceramic society,21(10-11), 1637-1642.
[35]Kishi, H., Kohzu, N., Mizuno, Y., Iguchi, Y., Sugino, J., Ohsato, H., & Okuda, T. (1999). Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3.Japanese journal of applied physics,38(9S), 5452.
[36]Kishi, H., Kohzu, N., Mizuno, Y., Iguchi, Y., Sugino, J., Ohsato, H., & Okuda, T. (1999). Effect of occupational sites of rare-earth elements on the microstructure in BaTiO3.Japanese journal of applied physics,38(9S), 5452.
[37]Barsoukov, E., & Macdonald, J. R. (2005). Impedance Spectroscopy Theory, Experiment, and.Applications, 2nd ed.(Hoboken, NJ: John Wiley &Sons, Inc., 2005).
[38]Sinclair, D. C., & West, A. R. (1989). Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance.Journal of Applied Physics,66(8), 3850-3856.
[39]Bauerle, J. E. (1969). Study of solid electrolyte polarization by a complex admittance method.Journal of Physics and Chemistry of Solids,30(12), 2657-2670.
[40]Sinclair, D. C., & West, A. R. (1989). Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance.Journal of Applied Physics,66(8), 3850-3856.
[41]Hagenbeck, R., & Waser, R. (1997). Simulation of electrical properties of grain boundaries in titanate ceramics.Berichte der Bunsengesellschaft für physikalische Chemie,101(9), 1238-1241.
[42]Hagenbeck, R., & Waser, R. (1998). Influence of temperature and interface charge on the grain-boundary conductivity in acceptor-doped SrTiO3 ceramics.Journal of applied physics,83(4), 2083-2092.
[43]Wang, T., Wang, X. H., Wen, H., & Li, L. T. (2009). Effect of milling process on the core-shell structures and dielectric properties of fine-grained BaTiO3-based X7R ceramic materials.International Journal of Minerals, Metallurgy and Materials,16(3), 345-348.
[44]Jeon, S. C., Yoon, B. K., Kim, K. H., & Kang, S. J. L. (2014). Effects of core/shell volumetric ratio on the dielectric-temperature behavior of BaTiO3.Journal of Advanced Ceramics,3(1), 76-82.
[45]Vollman, M., & Waser, R. (1994). Grain boundary defect chemistry of acceptor‐doped titanates: space charge layer width.Journal of the American Ceramic Society,77(1), 235-243.
[46]Chazono, H., & Kishi, H. (2001). DC-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure.Japanese Journal of Applied Physics,40(9S), 5624.
[47]Pullar, R. C., Penn, S. J., Wang, X., Reaney, I. M., & Alford, N. M. (2009). Dielectric loss caused by oxygen vacancies in titania ceramics.Journal of the European ceramic society,29(3), 419-424.
[48]吴旺华. (2018).外场下 BaTiO_3 基电介质材料的缺陷行为及机理研究(Master's thesis, 中国科学院大学 (中国科学院上海硅酸盐研究所)).
[49]Randall, C. A., & Yousefian, P. (2022). Fundamentals and practical dielectric implications of stoichiometry and chemical design in a high-performance ferroelectric oxide: BaTiO3.Journal of the European Ceramic Society,42(4), 1445-1473.
校內:2027-09-09公開