簡易檢索 / 詳目顯示

研究生: 王秩威
Wang, Zhi-Wei
論文名稱: 以金鈀核殼奈米立方體的核心大小來改變其表面電子結構
Core size-modified surface electronic structures of Au@Pd core@shell nanoparticles
指導教授: 吳欣倫
Wu, Hsin-Lun
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 42
中文關鍵詞: 雙金屬奈米粒子核殼結構表面功函數電子結構
外文關鍵詞: bimetallic nanopartilces, core@shell structure, work function, electronic structure
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高催化活性的金屬鈀,雖然能藉金屬與反應物進行配位反應降低其錯合物的位能使反應更易啟動,但要達到良好的產率必須在相對嚴苛的反應條件下(高溫、高壓)進行,因此我們希望能透過調整鈀金屬的功函數影響其表面電子結構並提升催化效率,對於金屬表面電子結構的改變可以利用不同金屬本身功函數的差異,使其鍵結後讓功函數較小、位能較高金屬的電子流向功函數較高、位能較低的金屬並提升催化效率。利用計算奈米粒子的電量狀態了解尺寸越大的奈米金屬其功函數較高,希望能藉由不同尺寸金的功函數讓兩金屬之間的淨差值增加,提升彼此之間電荷交換的趨勢。本實驗提供了簡單的方法合成不同大小的金奈米粒子外圍包上相同厚度的鈀金屬,並藉由鈴木耦合反應觀察產率與金奈米粒子尺寸的關係。

    It has been reported that the performance of reactions can be improved by adding the highly catalytic metal like Pd into reaction. Despite these advantages, it is still hard to achieve the proper chemical condition (temperature, pressure). To overcome the difficulties, we would like to apply a second metal changing the work function of Pd metal to modify the electronic structure. Charges will meet a new equilibrium level by redistribution. A report has shown that smaller size of nanoparticles will display lower work function value by calculating the charge state of nanoparticles. Here, we provided a simple way to synthesize different size of Au@Pd core@shell nanocubes with the same Pd shell thickness (2.5 nm) and discuss the work function changing with the size of Au cores. The results of Suzuki coupling reaction also proves the idea of our speculation.

    第一章 緒論 1 1-1 何謂高催化活性金屬 1 1-2 改變高催化活性金屬之電子結構 1 1-3 改變功函數值提升催化效率 3 1-4 雙金屬奈米粒子構造的選擇 5 1-5 殼層厚度的影響與抉擇 6 1-6 動機 8 1-7 參考資料 9 第二章 合成不同金核大小相同厚度的金鈀核殼奈米粒子 12 2-1 介紹 12 2-2 實驗部分 12 2-2-1藥品 12 2-2-2金奈米立方體 (33, 52, 74 nm) 13 2-2-3相同鈀殼厚度(2.5 nm)的金鈀核殼奈米立方體 (金核大小: 33, 52, 74 nm) 14 2-2-4合成55奈米金(核:33奈米)鈀(厚度:11奈米)核殼奈米立方體 15 2-2-5儀器 15 2-3 結果與討論 16 2-3-1 基本鑑定 16 2-3-2 功函數的測量 24 2-4 結論 28 2-5 參考資料 28 第三章 金鈀核殼奈米立方體之表面催化效應 30 3-1 介紹 30 3-2 實驗部分 30 3-2-1 藥品 30 3-2-2 鈴木耦合催化反應 30 3-2-3 儀器 33 3-3 結果討論 33 3-4 結論 36 3-5 參考資料 36

    第一章
    1. Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M., Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chemical reviews 2018, 118 (4), 2249-2295.

    2. Nie, Y.; Li, L.; Wei, Z., Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44 (8), 2168-2201.

    3. Sui, S. et al., A comprehensive review of Pt electrocatalysts for the oxygen reduction reaction: Nanostructure, activity, mechanism and carbon support in PEM fuel cells. J. Mater. Chem. A 2017, 5 (5), 1808-1825.

    4. Zhao, M. et al., Synthesis and characterization of Ru cubic nanocages with a face-centered cubic structure by templating with Pd nanocubes. Nano lett. 2016, 16 (8), 5310-5317.

    5. Deraedt, C.; Astruc, D., “Homeopathic” palladium nanoparticle catalysis of cross carbon–carbon coupling reactions. Acc. Chem. Res. 2014, 47 (2), 494-503.

    6. Dai, Y.; Liu, S.; Zheng, N., C2H2 treatment as a facile method to boost the catalysis of Pd nanoparticulate catalysts. J. Am. Chem. Soc. 2014, 136 (15), 5583-5586.

    7. Zhao, M. et al., Core–shell palladium nanoparticle@ metal–organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136 (5), 1738-1741.

    8. Yang, T. et al., Surface-limited synthesis of Pt nanocluster decorated Pd hierarchical structures with enhanced electrocatalytic activity toward oxygen reduction reaction. ACS Appl. Mater. interfaces 2015, 7 (31), 17162-17170.

    9. Tao, F. et al., Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322 (5903), 932-934.

    10. Zhu, X. et al., Optimising surface d charge of AuPd nanoalloy catalysts for enhanced catalytic activity. Nat. Commun. 2019, 10 (1), 1-11.

    11. Xiao, Q. et al., Efficient photocatalytic Suzuki cross-coupling reactions on Au–Pd alloy nanoparticles under visible light irradiation. Green Chem. 2014, 16 (9), 4272-4285.

    12. Tedsree, K. et al., Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nat. Nanotechnol. 2011, 6 (5), 302.

    13. Reineck, P.; Brick, D.; Mulvaney, P.; Bach, U., Plasmonic hot electron solar cells: the effect of nanoparticle size on quantum efficiency. J. Phys. Chem. Lett. 2016, 7 (20), 4137-4141.

    14. Zhang, Y. et al., Sensing the charge state of single gold nanoparticles via work function measurements. Nano lett. 2015, 15 (1), 51-55.

    15. Vattikuti, S. P., Heterostructured Nanomaterials: Latest Trends in Formation of Inorganic Heterostructures. In Synthesis of Inorganic Nanomaterials, Elsevier: 2018; pp 89-120.

    16. Wang, X. et al., Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction. ACS Energy Lett. 2018, 3 (5), 1198-1204.

    17. Fan, Z.; Zhang, H., Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Reviews 2016, 45 (1), 63-82.

    18. Hsu, S. C. et al., Turning the halide switch in the synthesis of Au–Pd alloy and core–shell nanoicosahedra with terraced shells: performance in electrochemical and plasmon-enhanced catalysis. Nano Letters 2016, 16 (9), 5514-5520.

    19. Zhong, J. H. et al., Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nature nanotechnology 2017, 12 (2), 132.

    20. Wang, Y. H. et al., Probing Interfacial Electronic and Catalytic Properties on Well‐Defined Surfaces by Using In Situ Raman Spectroscopy. Angewandte Chemie 2018, 130 (35), 11427-11431.

    21. Henning, A. M. et al., Gold–palladium core–shell nanocrystals with size and shape control optimized for catalytic performance. Angewandte Chemie 2013, 125 (5), 1517-1520.
    第二章
    1. Zhang, L.; Xie, Z.; Gong, J., Shape-controlled synthesis of Au–Pd bimetallic nanocrystals for catalytic applications. Chem. Soc. Rev. 2016, 45 (14), 3916-3934.

    2. Wu, H. L.; Kuo, C.-H.; Huang, M. H., Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010, 26 (14), 12307-12313.

    3. Yang, C. W. et al.,; Fabrication of Au-Pd Core-Shell Heterostructures with Systematic Shape Evolution Using Octahedral Nanocrystal Cores and Their Catalytic Activity. J. Am. Chem. Soc. 2011, 133, 19993–20000.

    4. Jones, M. R. et al., Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 2011, 111 (6), 3736-3827.

    5. Chiu, C. Y. et al., Facile synthesis of Au–Pd core–shell nanocrystals with systematic shape evolution and tunable size for plasmonic property examination. Nanoscale 2014, 6 (13), 7656-7665.

    6. Hutter, E.; Fendler, J. H., Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16 (19), 1685-1706.

    7. Xiang, Y. et al., Formation of rectangularly shaped Pd/Au bimetallic nanorods: evidence for competing growth of the Pd shell between the {110} and {100} side facets of Au nanorods. Nano lett. 2006, 6 (10), 2290-2294.

    8. Haiss, W.; Thanh, N. T.; Aveyard, J.; Fernig, D. G., Determination of size and concentration of gold nanoparticles from UV− Vis spectra. Analytical chemistry 2007, 79 (11), 4215-4221.

    9. Resource from Thermo Fisher Scientific. https://xpssimplified.com/UPS.php
    第三章
    1. Ishiyama, T.; Murata, M.; Miyaura, N., Palladium (0)-catalyzed cross-coupling reaction of alkoxydiboron with haloarenes: a direct procedure for arylboronic esters. J. Org. Chem. 1995, 60 (23), 7508-7510.

    2. Braga, A. A.; Ujaque, G.; Maseras, F., A DFT study of the full catalytic cycle of the Suzuki− Miyaura cross-coupling on a model system. Organometallics 2006, 25 (15), 3647-3658.

    3.Rej, S.; Hsia, C. F.; Chen, T. Y.; Lin, F. C.; Huang, J. S.; Huang, M. H., Facet‐Dependent and Light‐Assisted Efficient Hydrogen Evolution from Ammonia Borane Using Gold–Palladium Core–Shell Nanocatalysts. Angew. Chem. Int. Ed. 2016, 128 (25), 7338-7342.

    4. Trinh, T. T. et al., Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction. Nanoscale 2015, 7 (29), 12435-12444.

    無法下載圖示 校內:2025-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE