簡易檢索 / 詳目顯示

研究生: 楊啟宏
Yang, Chi-Hung
論文名稱: 貼附式壓電材料的複合曲樑之應力分析
Stress Analysis of a Curved Composite Beam Surface-Mounted with Piezoelectric Material
指導教授: 王榮泰
Wang, Rong-Tyai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 156
中文關鍵詞: 曲樑壓電材料複合材料
外文關鍵詞: Curved beam, piezoelectric, composite
相關次數: 點閱:87下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的為探討具有貼附式壓電材料之複合材料曲樑的結構特性;此結構上層與下層為壓電材料薄片,中間層為堆疊六層之複合材料,總合構成一曲樑。
    為了瞭解曲樑之力學行為,利用應力場、應變場、連續位移條件與溫度分佈公式的關係推導出應變能和動能公式,再以Hamilton’s Principle求得運動方程式和邊界條件。
    利用靜態結構方程式推導出位移場通解,並個別帶入邊界條件可以後獲得其位移場特解。
    在探討在不同的纖維角度的複合材與施與不同負載如:集中外力、溫差與電位差可以求的曲樑的應力與應變的分布情形,進而加以比較分析。

    A curved composited beam partially surface-mounted with piezoelectric material is considered in this paper. The curved beam element is based on Timoshenko beam theory.The mathematical model is based on a continuous displacement conditions piezoelectric field and temperature distribution formula. Then the strain energy and kinetic energy derived by the stress and the strain.Governing equation and boundary conditions are derived by Hamilton’s Principle.
    General solution of displacement field equations derived from the static structure. General solution can obtain special solutions constant by different boundary conditions.In the role of external force, temperature and potential difference,Stress and strain distribution can be obtained.

    目錄 摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 符號說明 XVI 第一章 緒論 1 §1-1 前言 1 §1-2 文獻回顧 3 第二章 研究架構 6 §2-1 架構流程 6 §2-2 基本假設 7 第三章 壓電材料複合式曲樑 8 §3-1 初始設定 8 §3-1-1 曲梁模型基本架構 8 §3-1-2位移場基本架構 9 §3-1-3 溫度分佈與熱傳設定 10 §3-2複合材料層基本參數和應力場 12 §3-3應變場 21 §3-3-1中心層應變架構 22 §3-3-2中心層應變能架構 22 §3-3-3壓電材料層應變架構 23 §3-3-4 壓電材料層合應力與合應力偶矩 24 §3-3-5 壓電材料層應變能架構 25 §3-3-6 整體應變能總合 27 §3-4 平衡方程式與邊界條件 28 §3-5 靜態平衡 31 §3-5-1 一三跨距靜態平衡方程式 31 §3-5-2 第二跨距靜態平衡 35 §3-6 整體結構靜態響應 48 §3-7結果與討論 54 §3-7-1 各參數值 54 §3-7-2 溫差作用 56 第四章 部分貼附式壓電材料複合式曲樑 71 §4-1初始設定 71 §4-1-1曲梁模型基本架構 71 §4-2複合材料層基本參數和應力場 72 §4-2-1壓電材料層應力場 75 §4-3應變場 77 §4-3-1中心層應變架構 78 §4-3-2中心層應變能架構 78 §4-3-3壓電材料層應變架構 79 §4-3-4 壓電材料層合應力與合應力偶矩 80 §4-3-5 壓電材料層應變能架構 81 §4-3-6 整體應變能總合 82 §4-4 平衡方程式與邊界條件 84 §4-5 靜態平衡 87 §4-5-1 一三跨距靜態平衡方程式 87 §4-5-2 第二跨距靜態平衡 91 §4-6 整體結構靜態響應 103 §4-7結果與討論 108 §4-7-1 各參數值 108 §4-7-2 外力作用 110 §4-7-3 電壓作用 126 第五章 總結與建議 142 §5-1結論 142 §5-2建議 143 參考文獻 144 附錄A 146 附錄B 148 自述 156

    參考文獻
    1.Sang-Kwan Lee, Joon-Hyung Byun and Soon Hyung Hong, “Effect of fiber geometry on the elastic constants of the plain woven fabric reinforced aluminum matrix composites,” Materials Science and Engineering, A347, 346-358, 2003.
    2. James R. Gaier, Yvonne Yoder Vandenberg and Steven erkebileb, “The electrical and thermal conductivity of woven pristine and intercalated graphite fiber–polymer composites,” Carbon 41, 2187-2193, 2003.
    3.Wen Huang, Xu Nie and Yuanming Xia, “Effects of heat-treatment and strain rate on the mechanical properties of SiC/Al composite wires—experimental and constitutive modeling,” Composites, Part A 36, 1316-1322, 2005.
    4.J.R. Vinson and R.L. Sierakowski, “The Behavior of Structures Composed of Composite Materials,” Martinus Nijhoff Publishers, DORDRECHT. NL/BOSTON.USA/LANCASTER.UK, 1986.
    5.Li Jun and Hua Hongxing, “Dynamic stiffness analysis of laminated composite beams using trigonometric shear deformation theory,” Composite Structures 89, 433-442, 2009.
    6.H.J. Xiang and Z.F. Shi, “Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load,” European Journal of Mechanics A/Solids 28, 338-346, 2009.
    7.Anil Kumar and D. Chakraborty, “Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites,” Materials and Design 30, 1216-1222, 2009.
    8.Nilanjan Mallik and M. C. Ray, “Effective Coef. Cients of Piezoelectric Fiber-Reinforced Composites,” AIAA JOURNAL, Vol. 41, No. 4, 2003.
    9.Manas Chandra Ray, “Micromechanics of piezoelectric composites with improved effective piezoelectric constant,” Int J Mech Mater Des 3, 361–371, 2006.
    10.Chung-De Chen, “On the singularities of the thermo-electro-elastic fields near the apex of a piezoelectric bonded wedge,” International Journal of Solids and Structures 43, 957-981, 2006.
    11.Sang Wook Park, Hak Sung Kim and Dai Gil Lee, “Optimum design of the co-cured double lap joint composed of aluminum and carbon epoxy composite,” Composite Structures 75, 289-297, 2006.
    12.Ping Tan and Liyong Tong, “Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites”,Composites Part A 33, 631-645, 2002.
    13.Harald Berger, Sreedhar Kari, Ulrich Gabbert, Reinaldo Rodriguez-Ramos, Raul Guinovart, Jose A. Otero and Julian Bravo-Castillero, “An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites”, International Journal of Solids and Structures 42, 5692-5714, 2005.
    14.A.E.H.Love,”A Treatist on the Mathematical Theory of Elasticity” Edn. Dove,New York,1994
    15.J.P.Den Hartog,”Mechanical Vibraions,” Edn.MaGraw-Hill,New York ,1956.
    16.S.S.Rao,”Effects of transverse and rotary inertia on the coupled twist-bending vibrations of circular ring,”Journal of Sound and Vibration,Vol.16,pp.551-556,1971.
    17.Qingyuan Meng,Mehran Mehregany and Keren Deng,”Modeling of the electromechanical performance of piezoelectric laminated microacutuators,”Journal of Micromech. Microeng,Vol.3,18-23,1993.
    18.Stephen Brooks and Paul Heyliger,”Static Behavior of Piezoelectric Laminates with Distributed and Patched Actuators”,Journal of Intelligent Material Systems and Structures,Vol.5,635-646,1994.
    19.S. RAJA, R. SREEDEEP and G. PRATHAP, ”Bending Behavior of Hybrid-actuated Piezoelectric Sandwich Beams,” Journal of Intelligent Material Systems and Structures, Vol.15,611-619(2004)

    無法下載圖示 校內:2016-09-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE