| 研究生: |
林嘉靚 Lin, Chia-Ching |
|---|---|
| 論文名稱: |
藉由多孔PVDF-TrFE及ITO或AZO當電子通道之雙層結構以提升壓電閘極場效電晶體的性能 Advancing Piezo-Gated Transistor Performance by Bilayer of ITO or AZO as the channel layer and Mesoporous PVDF-TrFE |
| 指導教授: |
劉全璞
Liu, Chuan-Pu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
智慧半導體及永續製造學院 - 關鍵材料學位學程 Program on Key Materials |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | PVDF-TrFE 、電暈極化 、壓電閘極 、電晶體 |
| 外文關鍵詞: | PVDF-TrFE, corona poling, piezo-gated, transistor |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技和科學持續不斷的發展與進步,人們對於開發柔軟的可穿戴電子裝置投入了相當大的關注。這些裝置對未來應用具有相當的潛力,尤其是他們可以應用的領域相當的廣泛,如晶體管、奈米發電器以及壓力/觸覺感測器。在柔性材料中,聚偏氟乙烯三氟乙烯(PVDF-TrFE)是一個值得注意的複合材料,他具有優越的縱向壓電系數(30~40 pC/N),遠高於PVDF(20~30 pC/N)。這種複合材料除了具有半結晶結構,也具有卓越的壓電和鐵電性質,並同時保持了柔韌性。
在這項研究中,為了進一步提高其柔韌性和壓電性能,我們通過混和氧化鋅(ZnO)奈米顆粒並在120°C的環境中進行熱退火處理,開發了具有孔洞的PVDF-TrFE。隨後,我們利用電暈極化(Corona poling)施加電場來使得複合材料中的偶極進行排列,並通過使用鹽酸選擇性地蝕刻氧化鋅,以實現所需的多孔結構。此外,我們在得到的多孔PVDF-TrFE不同偶極方向的兩側沉積薄的ITO或是鋁摻雜氧化鋅(AZO)薄膜作為傳導通道。最後,沉積兩個平面電極以製造壓電閘極電晶體裝置。
通過在1V偏壓下測量1Hz頻率下不同的壓應力作用,研究了壓電閘極電晶體的電流輸出。這兩種不同偶極方向的PVDF-TrFE裝置呈現了截然不同的行為。當對裝置的正極化表面(P表面)施加壓應力時,負電荷會在ITO/AZO和PVDF-TrFE的界面產生。因此,在ITO/AZO的頂部表面通道中形成電子的空乏區域,從而降低電流。受PVDF-TrFE極化偶極的影響,壓電閘極效應得到了徹底的研究。通過將壓電場應用於閘極,可以調整半導體通道的電阻,從而控制電流流動。這種技術顯著提高了壓電閘極電晶體裝置的開創性,為柔性和可穿戴電子、感測技術等領域中的先進應用開闢了一個道路。
In the context of scientific and technological progress, significant focus is directed towards the development of flexible wearable electronic devices. These devices hold considerable potential for future applications, particularly regarding their constituent elements such as transistors, nanogenerators, and pressure/tactile sensors. Amidst the flexible materials, one notable contender is the polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) composite, which possesses an excellent longitudinal piezoelectric coefficient (30~40 pC/N), much larger than that of PVDF (20~30 pC/N). This composite is characterized by its semi-crystalline nature and remarkable properties of piezoelectricity and ferroelectricity, while also retaining flexibility.
In this study, to further enhance its flexibility and piezoelectric properties, mesoporous PVDF-TrFE is developed by integrating ZnO nanoparticles followed by annealing at 120°C. Subsequently, corona poling was applied to enhance aligned polar dipoles within the composite along the direction of the applied electric field. This composite is then treated with HCl to selectively etch the ZnO and achieve the desired porous structure. Furthermore, a thin Al-doped ZnO (AZO) thin film is deposited on either side of the derived mesoporous PVDF-TrFE as a conduction channel. Finally, two in-plane electrodes are deposited to fabricate the piezo-gated transistor device.
The piezo-gated transistors are studied by measuring the current output at 1V bias and under different loads acting at 1Hz frequency. The two types of the devices exhibit contrasting behaviors in response to the two opposing dipole directions of PVDF-trFE. When a compressive load is applied to the positively poled surface (P surface) of the device, negative charges are created at the interface between ITO/AZO and PVDF-trFE. Consequently, an depletion region of electrons forms in the top surface channel of ITO/AZO, leading to an decreasement in current. The piezo-gated effect, influenced by the polar dipoles of PVDF-trFE, is thoroughly examined. By applying a piezoelectric field to the gate, it becomes possible to adjust the resistance of the semiconductor channel, thereby controlling current flow. This technique significantly improves the responsiveness of the piezo-gated transistor device, opening up possibilities for advanced applications in flexible and wearable electronics, sensing technologies, and beyond.
1. Kang, G.D. and Y.M. Cao, Application and modification of poly(vinylidene fluoride) (PVDF) membranes - A review. Journal of Membrane Science, 2014. 463: p. 145-165.
2. Li, X.L., H. Xu, and W. Yan, Fabrication and characterization of PbO<sub>2</sub> electrode modified with polyvinylidene fluoride (PVDF). Applied Surface Science, 2016. 389: p. 278-286.
3. Belouadah, R., et al., Electrical properties of two-dimensional thin films of the ferroelectric material Polyvinylidene Fluoride as a function of electric field. Physica B-Condensed Matter, 2009. 404(12-13): p. 1746-1751.
4. Salimi, A. and A.A. Yousefi, Conformational changes and phase transformation mechanisms in PVDF solution-cast films. Journal of Polymer Science Part B-Polymer Physics, 2004. 42(18): p. 3487-3495.
5. Costa, P., et al., The effect of fibre concentration on the α to β-phase transformation, degree of crystallinity and electrical properties of vapour grown carbon nanofibre/poly(vinylidene fluoride) composites. Carbon, 2009. 47(11): p. 2590-2599.
6. Sun, L.L., et al., Achieving very high fraction of β-crystal PVDF and PVDF/CNF composites and their effect on AC conductivity and microstructure through a stretching process. European Polymer Journal, 2010. 46(11): p. 2112-2119.
7. Mohammadi, B., A.A. Yousefi, and S.M. Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polymer Testing, 2007. 26(1): p. 42-50.
8. Yu, S.S., et al., Formation Mechanism of β-Phase in PVDF/CNT Composite Prepared by the Sonication Method. Macromolecules, 2009. 42(22): p. 8870-8874.
9. Bhadwal, N., R. Ben Mrad, and K. Behdinan, Review of Piezoelectric Properties and Power Output of PVDF and Copolymer-Based Piezoelectric Nanogenerators. Nanomaterials, 2023. 13(24): p. 29.
10. Meng, N., et al., Nanoscale interfacial electroactivity in PVDF/PVDF-TrFE blended films with enhanced dielectric and ferroelectric properties. Journal of Materials Chemistry C, 2017. 5(13): p. 3296-3305.
11. 陳彥廷, 利用電暈極化增益多孔 PVDF-TrFE 壓電隔離膜性能以提升壓電奈米發電機及應用於自供電鋰離子電池之評估, in 材料科學及工程學系. 2022, 國立成功大學: 台南市. p. 122.
12. Feng, Z.B., et al., Piezoelectric Effect Polyvinylidene Fluoride (PVDF): From Energy Harvester to Smart Skin and Electronic Textiles. Advanced Materials Technologies, 2023. 8(14): p. 21.
13. Lee, C.L., H. Park, and J.H. Lee, Recent Structure Development of Poly(vinylidene fluoride)-Based Piezoelectric Nanogenerator for Self-Powered Sensor. Actuators, 2020. 9(3): p. 15.
14. Selleri, G., et al., Self-sensing composite material based on piezoelectric nanofibers. Materials & Design, 2022. 219: p. 11.
15. Shi, K.M., et al., Interface induced performance enhancement in flexible BaTiO<sub>3</sub>/PVDF-TrFE based piezoelectric nanogenerators. Nano Energy, 2021. 80: p. 11.
16. Sharma, V.B., et al., Lead-Free Compositional Engineering to Induce Polar Phase in Polymeric Piezoelectric Host for Energy Harvesting Devices. Acs Applied Electronic Materials, 2024: p. 7.
17. Yildirim, Y.A., A. Toprak, and O. Tigli, Piezoelectric Membrane Actuators for Micropump Applications Using PVDF-TrFE. Journal of Microelectromechanical Systems, 2018. 27(1): p. 86-94.
18. Ji, S.H., Y.S. Cho, and J.S. Yun, Wearable Core-Shell Piezoelectric Nanofiber Yarns for Body Movement Energy Harvesting. Nanomaterials, 2019. 9(4): p. 9.
19. Ji, S.H. and J.S. Yun, Fabrication and Characterization of Aligned Flexible Lead-Free Piezoelectric Nanofibers for Wearable Device Applications. Nanomaterials, 2018. 8(4): p. 9.
20. Chen, X.L., et al., A high performance P(VDF-TrFE) nanogenerator with self-connected and vertically integrated fibers by patterned EHD pulling. Nanoscale, 2015. 7(27): p. 11536-11544.
21. Surmenev, R.A., et al., A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications. Nano Energy, 2021. 79: p. 24.
22. Huo, L.S., et al., Smart washer-a piezoceramic-based transducer to monitor looseness of bolted connection. Smart Materials and Structures, 2017. 26(2): p. 9.
23. Liu, J.M., et al., Piezoelectric coefficient measurement of piezoelectric thin films: an overview. Materials Chemistry and Physics, 2002. 75(1-3): p. 12-18.
24. Gomez, A., et al., Piezo-generated charge mapping revealed through direct piezoelectric force microscopy. Nature Communications, 2017. 8: p. 10.
25. Pham, C.D., et al., 3D High-resolution Mapping of Polarization Profiles in Thin Poly(vinylidenefluoride-trifluoroethylene) (PVDF-TrFE) Films Using Two Thermal Techniques. Ieee Transactions on Dielectrics and Electrical Insulation, 2009. 16(3): p. 676-681.
26. Santoro, S., et al., Experimental Evaluation of the Thermal Polarization in Direct Contact Membrane Distillation Using Electrospun Nanofiber Membranes Doped With Molecular Probes. Molecules, 2019. 24(3): p. 13.
27. Pillai, P.K.C., et al., PHOTOELECTRET AND ELECTROPHOTOGRAPHIC PROPERTIES OF BARIUM-TITANATE POLYVINYLIDENE FLUORIDE COMPOSITE FILM. Journal of Materials Science, 1991. 26(10): p. 2671-2676.
28. Taha, E.O., et al., Electron beam irradiation and carbon nanotubes influence on PVDF-PZT composites for energy harvesting and storage applications: Changes in dynamic-mechanical and dielectric properties. Inorganic Chemistry Communications, 2023. 151: p. 10.
29. Tiwari, V.K., et al., Electron beam-induced piezoelectric phase in poly(vinylidene fluoride) nanohybrid: effect at the molecular level. Polymer International, 2015. 64(2): p. 212-221.
30. Tripathy, A., et al., Tuning of highly piezoelectric bismuth ferrite/PVDF-copolymer flexible films for efficient energy harvesting performance. Journal of Alloys and Compounds, 2023. 932: p. 12.
31. Ikei, A., et al., Tunable In Situ 3D-Printed PVDF-TrFE Piezoelectric Arrays. Sensors, 2021. 21(15): p. 9.
32. Li, Y.H., et al., Investigation on<i> in</i><i>-situ</i> sprayed, annealed and corona poled PVDF-TrFE coatings for guided wave-based structural health monitoring: From crystallization to piezoelectricity. Materials & Design, 2021. 199: p. 18.
33. Rohit, A. and S. Kaya, A Systematic Study of Wearable Multi-Modal Capacitive Textile Patches. Ieee Sensors Journal, 2021. 21(23): p. 26215-26225.
34. Tansel, T., Effect of electric field assisted crystallisation of PVDF-TrFE and their functional properties. Sensors and Actuators a-Physical, 2021. 332: p. 6.
35. Tripathy, A., et al., Elucidating the Piezoelectric, Ferroelectric, and Dielectric Performance of Lead-Free KNN/PVDF and Its Copolymer-Based Flexible Composite Films. Acs Applied Electronic Materials, 2023. 5(10): p. 5422-5431.
36. Shen, S.H., et al., A ZnO/ZnO:Cr isostructural nanojunction electrode for photoelectrochemical water splitting. Nano Energy, 2013. 2(5): p. 958-965.
37. Xiao, J.R., et al., A carbon-quantum-dot-sensitized ZnO:Ga/ZnO multijunction composite photoanode for photoelectrochemical water splitting under visible light irradiation. Journal of Catalysis, 2017. 346: p. 70-77.
38. Asgari, E., et al., The investigation of removal performances of UV/ZnO, UV/ZnO/H<sub>2</sub>O<sub>2</sub> and UV/ZnO/O<sub>3</sub> processes in the degradation of Butoben and Phenylmethyl ester from aqueous solution. Optik, 2021. 228: p. 10.
39. Su, Y.C., et al., ZnO/Ag-Ag<sub>2</sub>O microstructures for high-performance photocatalytic degradation of organic pollutants. Clean Technologies and Environmental Policy, 2019. 21(2): p. 367-378.
40. Xu, Y.G., et al., Enhanced photocatalytic activity of new photocatalyst Ag/AgCl/ZnO. Journal of Alloys and Compounds, 2011. 509(7): p. 3286-3292.
41. Zhang, Y.Y., et al., Synthesis, Characterization, and Applications of ZnO Nanowires. Journal of Nanomaterials, 2012. 2012.
42. Alsaad, A.M., et al., Structural, Optoelectrical, Linear, and Nonlinear Optical Characterizations of Dip-Synthesized Undoped ZnO and Group III Elements (B, Al, Ga, and In)-Doped ZnO Thin Films. Crystals, 2020. 10(4): p. 17.
43. Chaudhary, D.K., et al., Wide-range ethanol sensor based on a spray-deposited nanostructured ZnO and Sn-doped ZnO films. Sensors and Actuators a-Physical, 2024. 370: p. 14.
44. Kim, J.H. and I.H. Yer, Growth of ZnO nanowire arrays on Ga-doped ZnO transparent conductive layers. Ceramics International, 2015. 41(8): p. 10227-10231.
45. Lin, J.C., et al., Structure and characterization of the sputtered ZnO, Al-doped ZnO, Ti-doped ZnO and Ti, Al-co-doped ZnO thin films. Materials Express, 2015. 5(2): p. 153-158.
46. Luo, L., et al., Transparent conducting Sn:ZnO films deposited from nanoparticles. Journal of Sol-Gel Science and Technology, 2013. 65(1): p. 28-35.
47. Pál, E., et al., Hydrothermal synthesis of prism-like and flower-like ZnO and indium-doped ZnO structures. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2009. 340(1-3): p. 1-9.
48. Babu, B.J., et al., Structural Properties of Ultrasonically Sprayed Al-Doped ZnO (AZO) Thin Films: Effect of ZnO Buffer Layer on AZO. Journal of Electronic Materials, 2015. 44(2): p. 699-705.
49. Ray, P.G., et al., Surfactant and catalyst free facile synthesis of Al-doped ZnO nanorods - An approach towards fabrication of single nanorod electrical devices. Applied Surface Science, 2020. 512: p. 8.
50. Manoharan, R., et al., Conversion of both photon and mechanical energy into chemical energy using higher concentration of Al doped ZnO. Journal of Alloys and Compounds, 2023. 948: p. 8.
51. Wang, R.C., et al., Fabrication of a Large-Area Al-Doped ZnO Nanowire Array Photosensor with Enhanced Photoresponse by Straining. Advanced Functional Materials, 2012. 22(18): p. 3875-3881.
52. Sun, J.M., D.Y. Jiang, and F.J. Zhang, Control of dual ultraviolet band flexible ultraviolet photodetector by piezo-phototronic effect. Journal of Luminescence, 2021. 232: p. 7.
53. Lu, X.L., et al., High-performance Al-doped ZnO flexible ultraviolet photodetector via piezo-phototronic effect. Journal of Applied Physics, 2023. 133(7): p. 10.
54. Sun, J.M., et al., Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors. Optik, 2021. 243: p. 8.
55. Lee, K.Y., et al., Chemical Mechanical Polishing Characteristics of ITO Thin Film Prepared by RF Magnetron Sputtering. Journal of the Korean Physical Society, 2012. 60(3): p. 388-392.
56. Li, C.N., et al., Improved performance of OLEDs with ITO surface treatments. Thin Solid Films, 2005. 477(1-2): p. 57-62.
57. Kim, J.S., et al., Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998. 84(12): p. 6859-6870.
58. Kim, H.J., et al., Direct laser patterning of transparent ITO-Ag-ITO multilayer anodes for organic solar cells. Applied Surface Science, 2015. 328: p. 215-221.
59. Kim, J.H., et al., Transparent Conductive ITO/Ag/ITO Electrode Deposited at Room Temperature for Organic Solar Cells. Journal of Electronic Materials, 2017. 46(1): p. 306-311.
60. Donato, A., et al., RF sputtered ZnO-ITO films for high temperature CO sensors. Thin Solid Films, 2009. 517(22): p. 6184-6187.
61. Xu, S.Y. and Y. Shi, Low temperature high sensor response nano gas sensor using ITO nanofibers. Sensors and Actuators B-Chemical, 2009. 143(1): p. 71-75.
62. Khan, M.Z.H., Nanoparticles Modified ITO Based Biosensor. Journal of Electronic Materials, 2017. 46(4): p. 2254-2268.
63. Iranmanesh, E., et al., Event-Trigger Dual-Signal-Mode Flexible Piezotronic Bipolar Junction Transistor With Machine Learning for AI-Sound Recognition. Ieee Electron Device Letters, 2023. 44(3): p. 440-443.
64. Hwang, S.K., et al., Flexible Non-Volatile Ferroelectric Polymer Memory with Gate-Controlled Multilevel Operation. Advanced Materials, 2012. 24(44): p. 5910-+.
65. Velusamy, D.B., et al., Thin reduced graphene oxide interlayer with a conjugated block copolymer for high performance non-volatile ferroelectric polymer memory. Organic Electronics, 2014. 15(11): p. 2719-2727.
66. Seo, J., et al., Highly Reliable Physical Bending Sensors using Heterostructured Floating Gate Organic Transistor. Advanced Materials Technologies, 2023. 8(8): p. 9.
67. Lee, M., et al., Brain-inspired ferroelectric Si nanowire synaptic device. Apl Materials, 2021. 9(3): p. 6.
68. Wei, L., et al., Wavelength-Selective, Narrowband Graphene Transistor with a Plasmon-Enhanced Pyroelectric Gate. Advanced Photonics Research, 2023. 4(6): p. 8.
69. Wang, L.F., et al., 2D piezotronics in atomically thin zinc oxide sheets: Interfacing gating and channel width gating. Nano Energy, 2019. 60: p. 724-733.
70. Dutta, J. and C.P. Liu, Analytical and experimental investigation of dual-mode piezo-gated thin film transistor for force sensors. Nano Energy, 2022. 95: p. 10.
71. Dutta, J., et al., Enormous enhancement of thermoelectric properties via piezo-gating effect. Nano Energy, 2023. 108: p. 9.
72. <金屬氧化半導體場效電晶體 MOSFET.pdf>.
校內:2027-07-19公開